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Abstract 
Heavy trucks comprise a much larger proportion of overall traffic in rural highways compared with their 

urban counterparts, hence detailed classification counts are needed to adequately assess the impacts of 

truck activity in these regions. Under current practice, truck count data obtained along non-detectorized 

rural highway corridors are either estimated using unreliable growth factors applied on decades-old 

observed data or collected via pneumatic tubes which need to be laid across highways to collect traffic 

data.  This study investigated a new truck classification approach using a Light Detection and Ranging 

(LiDAR) sensor array in a horizontal orientation, utilizing a reconstruction procedure that combines 

individual LiDAR frames with sparse point clouds to generate a feature-rich dense point cloud 

representation of vehicle objects to facilitate accurate truck classification.  Two LiDAR-based 

classification models were developed in this study: an axle-based model following the FHWA-CA scheme 

and a detailed body classification model. The axle-based model demonstrated the ability to distinguish 

vehicle classes according to the FHWA-CA scheme on a truck-focused dataset with a correct 

classification rate (CCR) of 0.79, averaged across all classes. The corresponding CCR for the body 

classification model was 0.88 across 31 body classes. A preliminary investigation of LiDAR intensity on 

trailer surfaces was also performed to evaluate the potential of identifying fleet characteristics of trucks. 
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Investigation of Truck Data Collection using LiDAR 
Sensing Technology along Rural Highways 

Executive Summary 
Heavy trucks comprise a much larger proportion of overall traffic in rural highways compared with their 

urban counterparts, hence detailed classification counts are needed to adequately assess the impacts of 

truck activity in these regions.  The traffic monitoring guide recommends that at least 30 percent of 

traffic data collection sites provide classification data.  However, piezo-based sensors, which are the 

predominant technology for collecting truck classification data are costly to maintain.   

Under current practice, truck count data obtained along non-detectorized rural highway corridors are 

either estimated using unreliable growth factors applied on decades-old observed data or collected via 

pneumatic tubes which need to be laid across highways to collect traffic data.  The former approach is 

inaccurate and tends to underestimate the actual traffic growth in California.  The latter approach 

exposes field personnel to significant safety hazards and is strongly discouraged unless lane closures are 

performed.  Notwithstanding, reliable rural highway data is still required to obtain necessary federal 

funding allocation through the Highway Performance Measurement System (HPMS) to ensure adequate 

maintenance of the rural highway network and monitor the performance of freight activity in these 

regions.  

This study explored the use of Light Detection and Ranging (LiDAR) technology to develop new truck 

classification models, utilizing a reconstruction procedure that combines frames of sparse point clouds 

to generate a dense point cloud representation of vehicle objects to facilitate accurate truck 

classification, while preserving the panoramic LiDAR Detection Zone (LDZ). The lower profile of the 

reconstructed vehicle point clouds was extracted and used to classify vehicles based on the FHWA-CA 

scheme. Next, this study adopted the PointNet deep representation learning algorithm to train the 

classification model from the preprocessed point cloud data to classify trucks according to their detailed 

body configurations. A preliminary investigation of LiDAR intensity on trailer surfaces was also 

performed to evaluate the potential of identifying fleet characteristics of trucks. 

Data 

The data used in this study were collected from the entrance ramp to the San Onofre truck scale from 

the Southbound I-5 Freeway in Southern California. The LiDAR sensor was placed in horizontal 

orientation above a traffic cabinet and was configured to scan the surroundings at a frequency of 10 

rotations per second with a 180-degree LDZ – each rotation generating a single 3D point cloud frame. 

Data Preprocessing 

The first step in data preprocessing involved background subtraction – the removal of the large set of 

points in the raw point cloud not associated with vehicles as shown in Figure 1.  
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Figure 1. Distinguishing foreground vehicle objects (blue) from the background (blue) to facilitate 

background subtraction 

 

This is followed by object detection, which determines the individual vehicles objects in the LiDAR field 

of view (shown in Figure 2) using a popular clustering technique called density-based spatial clustering 

of applications with noise (DBSCAN). 

 

Figure 2. Object Detection Result (Blue: outliers; Green: vehicle 1; Yellow: vehicle 2) 

 

The third step involves identifying the same vehicle point cloud object across multiple consecutive LiDAR 

frames through a process known as data association.  These individual frames of the same vehicle are 

then combined to yield a dense reconstructed LiDAR representation of the vehicle. 

 

Figure 3. A truck object represented by a sparse point cloud from a single frame (Left) vs. a dense point 

cloud representation reconstructed from multiple frames (Right).  

Two classification models were developed from this preprocessed dataset: an FHWA axle-based 

classification model as well as a body configuration-based model. 



Investigation of Truck Data Collection using LiDAR Sensing Technology along Rural Highways 
 
 

 12 

FHWA Axle-based Classification 

For the axle-based model, essential features from the lower profile of the reconstructed truck point 

cloud were extracted and used as inputs for the vehicle classification model. Then, a deep ensembled 

neural network model was developed to assign vehicle point clouds to their corresponding FHWA-CA 

classes. 

Table 1 provides a comparison between the model developed in this study with the state-of-the-art 

LiDAR-based classification model which used the single frame of an object to classify vehicles on the 

basis of the FHWA scheme (9). 

 

Table 1. Comparison between developed model (Bagging DNN) vs state of the art (Random Forest) 

FHWA-CA 
CCR  

(Bagging 
DNN) 

Testing 
Samples 

Classes defined in (9) 
CCR (Random  

Forest) (9) 
Testing 

Samples (9) 

Class 2 
0.75 20 

Passenger Vehicle 0.84 150 

Class 3 Four-tire Single Unit 0.70 69 

Class 4 None None Bus 1.00 20 

Class 51 0.97 934 Two-axle, six-tire, single-unit truck 0.44 17 

Class 6 0.95 208 Three-axle, single-unit truck 0.00 4 

Class 7 0.76 17 
Four or fewer axle, single-trailer 

truck 
None None 

Class 8 0.84 117 None None None 

Class 92 0.99 1,746 Five-axle, single-trailer truck 1.00 17 

Class 10 0.33 12 None None None 

Class 11 0.85 13 None None None 

Class 12 0.50 2 None None None 

Class 13 None None None None None 

Class 14 1.00 31 None None None 

Average 
CCR 

0.79 - - 0.76 - 

Note: 1Class 5 used in this study contained a two-axle truck pulling a small trailer which was not included in (9). 2 In the FHWA-CA scheme, Class 
9 type 32 was separated from the rest of Class 9 truck and labeled as Class 14. In (9), Class 14 trucks are merged into Class 9 trucks. 

Compared to the previous model (9), the new classification framework proposed in this study is able to 

classify vehicles in much more detail with significantly higher accuracy, especially for heavy-duty trucks 

from Class 8 to Class 14 which have disproportionally adverse impacts on pavement (39) and the 

environment (40). 

Truck Body Type Classification 

Transportation agencies have been increasingly interested in collecting truck body configuration data 

due to its strong association with industries and freight commodities, to better understand their distinct 

operational characteristics and impacts on infrastructure and the environment. The body classification 

model was based on a novel deep neural network architecture called PointNet, which has the ability to 

directly adopt point clouds as inputs and detect critical features for classification from the raw inputs.  

An ensemble of five models were trained using different initialization values to address model variance 
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and further enhance model performance.  Model averaging was applied to these five models to yield the 

final model prediction. Two model averaging methods were explored and in this study Simple Model 

Averaging (SMA) and Bayesian Model Averaging (BMA). The results from SMA and BMA are presented in 

Table 2. After applying model averaging across five PointNet models, the number of classes with CCR 

value less than 80 percent was significantly reduced. The model ensemble outperformed most of the 

individual models in terms of accuracy, average class CCR, and F1 score. SMA and BMA presented the 

same level of accuracy according to these aggregated measurements. The two-sided non-parametric 

Wilcoxon signed-rank test (47), was conducted to test if a significant difference existed between the 

results of SMA and BMA. The p-value of 0.02 showed the null hypothesis for the difference between 

SMA and BMA was significant, and at a significance level of 5 percent could be rejected. Therefore, the 

performance of SMA was determined to be significantly better than BMA. 
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Table 2 Results of Body Classification Model 

  Model 1 Model 2 Model 3 Model 4 Model 5 SMA BMA 
Test 
Sample 

20ft Container 0.98 0.98 1.00 1.00 0.93 1.00 1.00 59 

40ft Container 1.00 1.00 1.00 1.00 1.00 0.99 0.99 196 

53ft Container 0.94 0.97 0.97 0.97 0.97 0.96 0.96 170 

Auto (Conventional) 0.71 0.94 0.91 0.88 0.82 0.91 0.91 34 

Auto (Pickup) 0.90 0.95 0.79 0.90 0.74 0.89 0.89 19 

Bobtail 1.00 1.00 1.00 1.00 1.00 1.00 1.00 109 

Cab-over Enclosed Van (SU) 0.95 0.98 0.98 0.99 0.97 0.99 1.00 148 

Concrete 1.00 1.00 1.00 1.00 1.00 1.00 1.00 16 

Conventional Enclosed Van (SU) 0.97 0.96 0.97 0.97 0.97 0.97 0.97 362 

Drop Frame Van (Semi) 0.82 0.82 0.79 0.82 0.86 0.82 0.79 28 

Dry Bulk Transport 1.00 1.00 0.94 0.94 0.94 1.00 1.00 16 

Enclosed Van (Multi) 0.80 0.80 1.00 0.80 0.80 0.80 0.80 5 

Enclosed Van (Semi) 0.99 0.98 0.99 0.98 0.99 0.98 0.99 928 

End Dump (SU) 0.81 0.89 0.92 0.89 0.89 0.88 0.88 26 

End Dump (Semi) 0.83 1.00 0.96 0.91 0.87 0.96 0.96 23 

End Dump wTrailer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7 

Low Boy Platform 0.82 0.84 0.89 0.82 0.93 0.91 0.91 56 

Low Loading 0.86 0.91 0.88 0.90 0.90 0.90 0.89 116 

Open Top Van 0.00 0.25 0.25 0.00 0.75 0.25 0.00 4 

Passenger Vehicle 0.83 0.83 0.87 0.73 0.77 0.80 0.80 30 

Pickup-Utility-Service 0.81 0.71 0.76 0.73 0.79 0.79 0.79 94 

Pickup-Utility-Service wTrailer 0.79 0.67 0.88 0.75 0.71 0.88 0.83 24 

Plaform wTrailer 0.80 0.77 0.80 0.80 0.83 0.83 0.83 30 

Platform (SU) 0.87 0.86 0.90 0.86 0.84 0.90 0.89 135 

Platform (Semi) 0.91 0.93 0.93 0.91 0.91 0.94 0.94 160 

Stake Body (SU) 0.81 0.88 0.87 0.90 0.83 0.89 0.89 114 

Tank (Multi) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5 

 Tank (SU) 0.64 0.55 0.73 0.55 0.64 0.73 0.64 11 

Tank (Semi) 0.94 1.00 0.99 0.96 0.99 0.99 0.99 83 

 Tank Tank 1.00 0.96 1.00 1.00 1.00 1.00 1.00 27 

Others 0.29 0.37 0.45 0.47 0.22 0.37 0.18 49 

Accuracy 0.92 0.93 0.94 0.93 0.93 0.94 0.94 3,084 

Avg CCR 0.84 0.86 0.88 0.85 0.87 0.88 0.86 3,084 

Note: SU: Single-Unit Truck; Semi: Tractors pulling Semi-Trailer; Multi: Tractors pulling multiple trailers. 

Cells labeled with red colors represent CCR lower than 0.80. Green colors highlight the benefits of using 

the SMA model. 

LiDAR intensity-based Truck Surface Characterization 

Aside from their physical attributes, fleet identification features such as logos found on many trucks can 

be used to infer their industry affiliation and can serve as another dimension of truck characterization to 

provide further insights into their activity patterns.  Fittingly, along with the depth and geometry 

information, LiDAR sensors also provide an additional attribute widely named as ‘intensity’(I). LiDAR 

intensity is the measured power (returned) of a reflected laser beam from a target surface. These 

intensity values are indicator of surface reflectance of the target surface, and are influenced by factors 

such as range (R), angle of incidence (𝛼), target surface roughness, and other instrument related 
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variables. A significant advantage of LiDAR intensity over conventional images is its independence of 

ambient lighting, which allows it to be effective in poor lighting conditions, such as twilight and night 

times.  This capability makes LiDAR a candidate technology for capturing truck fleet attributes. 

This study focused on estimating the parameters for the LiDAR intensity correction using a data driven 

technique such as mentioned in (55). As per the proposed framework the corrected intensity values(𝐼𝑐) 

could be written as a function of observed intensity(𝐼𝑜), range(𝑅), and cosine of angle of incidence 

(𝛼)as shown below. 

𝐼𝑐 = 𝐼𝑜𝑅𝑎 cosb(𝛼) 

Each LiDAR scan of truck is a pointcloud object depicting the cartesian coordinates of truck geometry in 

3D. Range and angle of incidence of each of those points needs to be calculated for estimating the 

Intensity correction parameters. The range of each of the points can be estimated directly by estimating 

the length of their position vector from the LiDAR scanner itself.  

Preliminary results presented in Figure 4 show an improved distinction of fleet identification features. 

The corrected intensity values show a reduction in the variance of intensity values quite well and 

provides a distinct contrast of fleet features against the background. 

 

Figure 4. Preliminary results of LiDAR intensity correction 
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Conclusion 

To fill the truck monitoring gaps on rural highway corridors, this study developed two novel LiDAR-based 

truck classification methods through the development of a new truck point cloud reconstruction 

framework that was able to retain a wide LDZ and accurately classify trucks based on the FHWA-CA 

scheme and detailed truck body configurations. The data used for modeling was collected from a 

horizontally oriented multi-array 3D LiDAR sensor, which has the ability to capture a wide field of view of 

the roadway.  The horizontal implementation is particularly useful in rural two-lane highways, where the 

wide field of view can overcome partial occlusion events when a vehicle in the near lane momentarily 

occludes another vehicle traveling in the opposite direction on the far lane. 

The sparse point clouds from individual frames resulting from a low vertical resolution were enriched by 

aggregating multiple frames associated with the same truck.  

The axle-based classification model with the reconstruction framework outperformed the state-of-the-

art axle-based classification model using LiDAR sensors both in terms of accuracy and robustness. This 

LiDAR-based FHWA model achieved a 79 percent average CCR. Classes 8 and 9 were classified correctly 

with 84 percent and 99 percent CCR even though they share very similar body configurations. 

This study investigated the PointNet deep representation learning algorithm to further classify trucks in 

their detailed body configurations. The LiDAR-based truck body type classification model was able to 

classify heavy-duty trucks in much more detail, with a close relationship to their industry affiliations. This 

model was able to classify 31 different vehicle types (advantageously mainly trucks) and achieve an 

average class CCR of 90 percent for both a truck with trailer (s) and single-unit vehicles. Remarkably, the 

proposed method was able to distinguish 53ft containers and semi-trailer enclosed vans with over 95 

percent CCR even though they share very similar physical characteristics, which is a significant 

improvement over previous models using the integration of WIM and inductive signature data (38), as 

well as LiDAR (8). 
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1. Introduction 
Heavy trucks comprise a much larger proportion of overall traffic in rural highways compared with their 

urban counterparts, hence detailed classification counts are needed to adequately assess the impacts of 

truck activity in these regions.  The traffic monitoring guide recommends that at least 30 percent of 

traffic data collection sites provide classification data.  However, piezo-based sensors, which are the 

predominant technology for collecting truck classification data are costly to maintain.  Furthermore, 

while significant permanent traffic detector infrastructure such as inductive loop, piezo-based axle 

classifiers, and weigh-in-motion (WIM) systems have been invested in urban regions and major 

interstate corridors, traffic data along many rural highway corridors are still primarily obtained via 

temporary pneumatic hose sensors. 

Under current practice, truck count data obtained along non-detectorized rural highway corridors are 

either estimated using unreliable growth factors applied on decades-old observed data or collected via 

pneumatic tubes which need to be laid across highways to collect traffic data.  The former approach is 

inaccurate and tends to underestimate the actual traffic growth in California.  The latter approach 

exposes field personnel to significant safety hazards and is strongly discouraged unless lane closures are 

performed.  However, lane closures are costly and labor-intensive, which significantly affect the 

efficiency of data collection efforts. These further limits the number of sites where actual data can be 

collected in place of estimates due to labor and time constraints. Notwithstanding, reliable rural 

highway data is still required to obtain necessary federal funding allocation through the Highway 

Performance Measurement System (HPMS) to ensure adequate maintenance of the rural highway 

network and monitor the performance of freight activity in these regions.  

The rapid advancement of Light Detection and Ranging (LiDAR) technology in recent years provides 

further opportunities for non-pavement intrusive alternatives to collect detailed vehicle classification 

data. In this study, a new truck classification method is developed using a LiDAR sensor array in a 

horizontal orientation, utilizing a reconstruction procedure that combines frames of sparse point clouds 

to generate a dense point cloud representation of vehicle objects to facilitate accurate truck 

classification, while preserving the panoramic LiDAR Detection Zone (LDZ). First, vehicle point clouds 

were extracted by removing the background and clustering the residual points into objects. Then, a new 

vehicle reconstruction framework was built to enrich the sparse point cloud obtained from the 

horizontally oriented sensor.  Objects associated with the same vehicle from consecutive frames were 

grouped and combined to generate a dense 3D point cloud representation of each vehicle. 

Subsequently, the lower profile of the reconstructed vehicle point clouds was extracted and used to 

classify vehicles based on the FHWA-CA scheme. In contrast to previous studies, which used a classic 

machine learning framework, this study adopted the PointNet deep representation learning algorithm to 

train the classification model from the preprocessed point cloud data to classify trucks according to their 

detailed body configurations. Both classification models were found to produce promising prediction 

results. 
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2. Literature Review 
LiDAR technology was initially investigated for vehicle classification applications in the early 2000s when 

scanning laser sensors were available for the domain of traffic surveillance. Such sensors scan the cross-

section of the roadway by taking several range measurements and generate gray-level intensity images 

for each vehicle passing through the scanning area. Abdelbaki et al used two laser scanners with a 10-

degree separation to classify vehicles based on their aggregated bodies (1). In their study, high-level 

features such as vehicle length, vehicle width, vehicle height, and speed features were extracted from 

the intensity images and a rule-based classification lookup table was created to assign vehicles into their 

corresponding classes based on extracted features. Later, Hussain et al. adopted the same data 

collection setup with an additional feature, the average of the percent of edge points between two 

consecutive images, to further improve the classification accuracy (2). Instead of using a rule-based 

classification method, they constructed a random neural network model for the classification purpose. 

The prediction error was reduced with their improved classification method (2). Similarly, Sandhawalia 

et al. interpreted the 3D measurements acquired from a SICK laser scanner as a 2D image, where the 

pixel intensities were used as the depth values. The vehicle classification problem was posed as an 

image categorization problem (3). Instead of directly using geometrical vehicle attributes from the 

profile image, Sandhawalia et al utilized the Fisher vector representation of the profile image, where a 

set of low-level local features obtained from the profile image was transformed into a high-level image 

representation (3).  Subsequently, high-level feature vectors were extracted from the fisher image 

signatures and were classified using the one-versus-all linear classifier. This model was able to classify 

vehicles into 6 categories with an average accuracy of 82.5%. The three aforementioned studies 

involved overhead sensor mountings which offer the capability to capture detailed depth measurements 

of each passing vehicle. However, overhead installations are subject to availability of suitable 

infrastructure. Hence, alternative orientations such as roadside LIDAR setups were explored in 

subsequent vehicle classification studies. 

Lee and Coifman adopted side-fire LiDAR for vehicle classification (4) where they designed a prototype 

data collection system consisting of a roadside probe vehicle equipped with two vertically oriented laser 

scanners. Both sensors scan the vertical planar of the road section simultaneously to construct a 3D 

LiDAR image by merging successive 2D frames (5). After obtaining the 3D point cloud for the surveillance 

area, the vehicle objects were extracted from the background using a well-established background 

subtraction algorithm derived from the domain of image processing. Then, six high-level features 

describing the physical characteristic of each vehicle were extracted from the vehicle cluster as inputs to 

the classification model. Finally, the vehicle clusters were classified using a decision tree classifier into 

six distinct classes refined from the length-based classification scheme.  Researchers also explored using 

low-cost single-beam side-fire LiDAR to obtain truck body information. Asborno et al. grouped the raw 

distance measurements from the LiDAR sensor over time to build vehicle signatures and adopted a 

Bayesian combined predictor to classify trucks based on their aggregated body type classes (6). They 

demonstrated cost-effective roadside setup of the LiDAR sensors for collecting classification data. 

However, neither the laser scanner nor the single-beam LiDAR sensor were designed to provide a 

detailed vehicle profile, which limited the classification accuracy as well as the diversity of vehicle 

configurations that could be classified. 
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In recent years, multi-array rotating 3D LiDAR sensors have grown in popularity due to the sensing needs 

of autonomous vehicles. Nezafat et al mounted such a sensor on a roadside pole with a vertical 

orientation (7), as illustrated in Figure 2.1b. 

Figure 2.1 Illustration of LiDAR Orientation 

 

When a truck enters the LiDAR detection zone, each scan of the sensor can capture a 3D profile of one 

slide of the truck body within the scanning area. However, the vertical orientation of the sensor 

constrained the detection zone to a 40-degree horizontal of view (Figure 2.2). 

Figure 2.2 Truck Point Cloud Collection from Vertically Oriented LiDAR 

 

Therefore, they had to merge all the frames associated with the same vehicle to generate the full profile 

of a truck. Then, they projected the 3D profiles of trucks to 2D images and adopted a pre-trained 

convolution neural network model to extract low-level features from the images. Such an image-based 

method was able to distinguish only 4 types of trucks with a similar configuration, yielding over 95% 

accuracy. However, the 3D information from the point cloud was not well-utilized in their research, 

which limited the total number of truck types that could be classified. Adopting the same data 

processing strategy with the vertical orientation of the sensor, Sahin et al. utilized the 3D profile of the 

truck obtained from the merged frames to classify truck trailers in detail. Sahin et al. divided the 3D 

truck profile into six equal-sized rectangular voxels and extracted high-level features that represented 

the physical characteristics of different trailer types (8). Finally, five different classic matching learning 

algorithms were explored to classify 9 different trailers with the highest median accuracy of 94.2%. The 

vertical orientation of the multi-array rotating 3D LiDAR was able to capture a dense representation of 

each vehicle. However, the narrow detection zone required an assumption of constant vehicle speed to 

accurately reconstruct the individual frames, which restricts its feasibility under congested traffic 

conditions where significant acceleration and deceleration may be observed. Wu et al. utilized a 
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horizontally oriented LiDAR sensor, which provided a 360-degree view of the ambient environment, for 

vehicle classification (9). Unfortunately, the sparse point cloud representation retrieved from the 

horizontally oriented LiDAR gave insufficient information for detailed truck classification. Therefore, 

they were only able to distinguish three different types of trucks (Table 2.1). The evolution of LiDAR-

based vehicle classification is listed in Table 2.1. 

Table 2.1 Summary of LiDAR-based Vehicle Classification 

Year Literature LiDAR 
Type 

Setup Methods Type Classification Method Correct Classification Rate 

2000 Abdelbaki et 
al., (2001) 

Laser 
scanner 

Overhead 
mounted, 
two lasers 

High-level Hand-
designed features 
from Intensity 
Image 

Rule-based Lookup 
table 

Motorcycle: 66.6%  
Passenger vehicle: 87.2%;  
Pickup/Van/Sport Utility: 90.3%; 
Misc. Truck/Bus/RV: 84.7%;  
Tractor Trailer: 100.0% 

2005 Hussain & 
Moussa, 
(2005) 

Laser 
scanner 

Overhead 
mounted, 
two lasers 

High-level Hand-
designed features 
from Intensity 
Image 

Classic machine 
learning (random 
neural network) 

Motorcycle: 60.0%;   
Passenger vehicle: 90.0%;  
Pickup/van: 94.4;  
Single unit truck or bus: 85.0%;  
Tractor Trailer: 100.0% 

2013 Sandhawalia 
et al., (2013) 

Laser 
scanner 

Overhead 
mounted, 
each 
sensor per 
lane 

High-level hand-
designed features 
from raw profile 
feature, fisher 
image signatures, 
side projection 
profiles 

Classic machine 
learning 

Passenger vehicle: 99.8%;  
Passenger vehicle with one trailer: 
89.8%;  
truck: 81.4%;  
truck with one trailer: 89.7%;  
truck with two trailers: 68.8%;  
motorcycle: 68.7% 

2012 Lee & 
Coifman, 
(2012) 

Laser 
scanner 

Side-fire, 
vertically 
orientation, 
two lidars 

High-level hand-
designed feature 
from raw points 

Classic machine 
learning 

Motorcycle:91.2%;  
Passenger vehicle: 99.9;  
Passenger vehicle pulling trailer: 94.1%;  
Single unit truck: 94.5%; 
Single trailer: 68.9%;  
Multiunit truck: 98.6% 

2019 Asborno et 
al., (2019) 

Single 
beam 

Side-fire, 
horizontal 
orientation 

Combination of 
High-level hand-
designed feature 
and low-level 
feature from LiDAR 
signature 

2D LiDAR signature 
pattern 
Classic machine 
learning (Bayesian 
combined predictor) 

Van and container: 94%;  
Platform type: 63%;  
Low-profile trailer: 44%;  
Tank: 33%;  
Hopper and end dump: 30% 

2019 Wu et al., 
(2019) 

Multi-
array 
rotating 
3D LiDAR 

Side-fire, 
horizontal 
orientation 

Hand-designed 
features from raw 
points 

Max height, the 
nearest distance to 
lidar, number of points 
in the frame, the 
difference between 
length and height, 
object profiles 
Classic machine 
learning  

Bus: 100%;  
Five-axle, single-trailer truck: 94.1%;  
Bicycle; motorcycle: 5.9%; 
Three-axle, single-unit truck: 0%; 
Passenger car; four-tire, single unit; 
two-axle, six-tire, single-unit truck: 
93.2%;  
Pedestrians and skateboarder:100% 

2019 Vatani 
Nezafat et 
al., (2019) 

Multi-
array 
rotating 
3D LiDAR 

Side-fire, 
vertical 
orientation 

Low-level feature 
from 2D images 

Transfer Learning 
(AlexNet, VggNet and 
ResNet 

Container: 98.4%;   
Ref Container:  90.1%;  
Ref Enclosed Van: 95.7%;  
Enclosed Van: 97.6% 

2020 Sahin et al., 
(2020) 

Multi-
array 
rotating 
3D LiDAR 

Side-fire, 
vertical 
orientation 

Hand-designed 
features from 
vowelized point 
cloud 

 
Classic machine 
learning  

20ft Container: 96.3%;  
40ft Container: 97.7%;  
40ft reefer container:94%;  
Dry Van: 94.3%;  
Reefer dry Van:  91.0%;  
platform: 94.9%;  
Tank: 97.1%;  
Auto transport: 91.1;  
open top and dump: 85.1;  
other: 62.5 
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While the side-fire orientation provides advantages in installation setup, it exposes the challenge of 

capturing detailed dense point clouds. While a vertically oriented LiDAR sensor has the ability to capture 

dense point cloud over successive frames, its narrow horizontal field of view requires the assumption of 

constant vehicle speeds. On the other hand, horizontally oriented LiDAR possesses a wider horizontal 

field of view, but each resulting point cloud is sparse and limits the accuracy of the resulting 

classification model. Most studies in the literature adopted a similar methodology approach. First, high-

level features were selected and derived from either raw or transformed points, such as 2D depth 

images and voxels. Then, the high-level features were directly used as input for classic machine learning 

algorithms. The classic machine learning algorithms may work adequately for a classification scheme 

with a small number of defined features (e.g., the axle-configuration in the FHWA classification scheme). 

However, for the task of body type classification problem, a combination of a myriad of features 

potentially can be used to differentiate various truck body types. Therefore, incorporating feature 

extraction into the optimization process of the classification algorithm would be much more ideal. In 

summary, it is challenging to collect sufficient information for truck classification while maintaining the 

view of detection. To address this challenge, this research study investigated a novel truck classification 

method, which presents a potential for multi-lane truck classification application and is capable of 

classifying based on both FHWA classification scheme and truck body types in detail with a promising 

results. 
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3. Data Description and Preprocessing 
3.1 Study Site Layout 
The data used in this study were collected from the entrance ramp to the San Onofre truck scale from 

the Southbound I-5 Freeway in Southern California (as shown in Figure 3.1). The LiDAR sensor was 

placed in horizontal orientation above a traffic cabinet. The z-axis of the LiDAR sensor is aligned 

perpendicular to the truck flow direction. The yellow sector shown in Figure 3.1 illustrates the 

approximated LiDAR Detection Zone (LDZ). Data under free flow and congested conditions were 

observed at the study site and included in the model development.  

 

Figure 3.1 Layout of the Detection Site 

 

3.2 Data Collection Setup 
A video camera, an advanced loop detector card and a Velodyne VLP-32c LiDAR unit were installed at 

the study site as shown in Figure 3.2. The lateral distance between the LiDAR sensor and the centerline 

of the adjacent traffic lane was approximately 6 meters. All three sensors were connected to a solid-

state field processing unit. The video camera and loop detector were used to establish data groundtruth. 

The Velodyne VLP-32c sensor has 32 infra-red lasers paired with infra-red detectors mounted on a 

motorized rotating platform to provide distance measurement between the sensor and objects (10).  

The LiDAR was configured to scan the surroundings at a frequency of 10 rotations per second with a 

180-degree LDZ – each rotation generating a single 3D point cloud frame. The LiDAR sensor was 

horizontally mounted on a platform attached to the roadside pole of an existing traffic control cabinet.  
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Figure 3.2 System Setup 

 

The LiDAR sensor was mounted 2.05 meters above the ground plane and the top laser channel elevation 

angle was 15 degrees (Figure 3.2), which allowed the sensor to capture both the top and side view of 

passing vehicles. As shown in Figure 3.2, z-axis is perpendicular to the direction of the traffic and the 

laser array rotates about the z-axis. 
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Figure 3.3 Illustration of the LiDAR Sensor 

 

A sample of raw point cloud data frame showing a vehicle entering the truck scale within the LDZ is 

presented in Figure 3.4. 

 

Figure 3.4 The Raw Point Cloud of the Detection Region 

 

3.3 Data Description 
The video data from the camera, inductive loop signature data from the loop detector, and point cloud 

data from the LiDAR sensor, were collected simultaneously. Several data collection efforts were made 

between July 18th, 2019 and August 5th, 2019, yielding a point cloud dataset comprising 10,024 

processed vehicles and representing 30 distinct truck categories defined in this study (including a class 

labeled as “Other” which represented trucks not belonging to any of the classes shown in Figure 3.5) as 

well as passenger vehicles (Figure 3.5). 70 percent of the data were used for training and 30 percent 

were reserved for model testing.  
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Figure 3.5 Illustration of Vehicle Body Configuration used in the study (Note: SU: Single Unit 
Trucks, Semi: Tractors pulling Semi-Trailer, Multi: Tractors pulling Multiple Trailers.) 

 

3.4 Semi-automatic Data Labeling Method 
Data labeling is a critical but typically labor-intensive process in vehicle classification modeling research. 

Conventionally, the data labeling process requires a significant effort to visually determine the class 

label of each detected vehicle through images from the video camera, and subsequently manually 
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record the corresponding vehicle characteristics. In this study, a semi-automatic data labeling strategy 

was developed and implemented to improve the efficiency of the data labeling process and further 

enrich the training dataset. The semi-automatic data labeling method utilized inductive loop signature 

classification predictions as a preliminary data labeling mechanism to establish the dataset used to train 

the LiDAR-based classification model. Note, inductive loop sensors are not required for the LiDAR-based 

model implementation and calibration. 

The overall semi-automatic data labeling process is illustrated in Figure 3.6. First, vehicle records from all 

three data sources (inductive loop, video and LiDAR) were synchronized and aligned. When a vehicle 

enters the inductive loop sensor’s detection zone, a timestamp is generated with its inductive signature. 

Next the corresponding images from the video camera are cropped based on the synchronized 

timestamp. Then, a time window with a range of ± 0.1 seconds around the time instance that the 

vehicle hit the loop sensor is created. The vehicle point cloud object which contains frames within the 

time window are subsequently aligned with the vehicle image. This study adopted a signature-based 

truck classification model to pre-label vehicle images (11). All vehicle records were still manually verified 

against their video images.  However, processing effort is significantly reduced as only misclassified data 

required manual label correction. Finally, the labels were applied to corresponding point clouds as the 

data sources were aligned and integrated. This semi-automatic data labeling strategy significantly 

accelerated the labeling process for emerging sensors (Sensor 2 in Figure 3.6) with the support of the 

existing technology (Sensor 1 in Figure 3.6). 

 

Figure 3.6 Semi-automatic Data Labeling Framework 
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3.5 Data Preprocessing 

3.5.1 Background Subtraction and Object Detection 
A large set of points in the raw point cloud was associated with static objects, e.g., ground, buildings. 

These background points were required to be subtracted from the raw point cloud to reduce the data 

processing time and improve the accuracy of the proposed classification method. 

A point cloud background subtraction method was developed based on spatial occupancy. The 

algorithm started with aggregating the point cloud data over an initiation period 𝑡. The points 

originating from each of the 32 laser channels of the LiDAR were distributed on a conical surface, with 

the LiDAR unit being the apex. The elevation angles of the channels are listed below: 

 

Table 3.1 Laser Channel Angles 

ID Elevation Angles (deg) ID Elevation Angles (deg) 

0 15 16 -1.667 

1 10.3333 17 -2 

2 7 18 -2.333 

3 4.667 19 -2.667 

4 3.333 20 -3 

5 2.333 21 -3.333 

6 1.667 22 -3.667 

7 1.333 23 -4 

8 1 24 -4.667 

9 0.667 25 -5.333 

10 0.333 26 -6.148 

11 0 27 -7.254 

12 -0.333 28 -8.843 

13 -0.667 29 -11.31 

14 -1 30 -15.639 

15 -1.333 31 -25 

 

The cumulative number of points within each cell on the conical surface was subsequently counted, 

defined by a horizontal angular resolution 𝜃, the channel number 𝐼, and the radical distance resolution 

𝑟. The cells that were occupied by the background objects were deemed to have more points, which was 

identified using a threshold ℎ. These background cells were used as a mask to filter out background 

points in other frames. The initiation period 𝑡 should be long enough to accumulate enough points in the 

environment, but not too long to waste computational resources. Smaller point/range resolution values 

led to smaller cells, which depicted the background with better resolution. However, too-small cells led 

to a much longer initialization time and higher computational complexity. The horizontal angular 

resolution of the Lidar sensor, which is the angular difference between two adjacent points on the same 

channel, is also an important factor to consider when choosing 𝜃. The Lidar used in this study has an 
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angular resolution of 0.2°. 𝜃 should be larger than 0.2° so that at least one point falls into each cell at 

each frame. 

The threshold h should be tuned based on all other parameters. The following parameters were used in 

this study: 𝑡 = 60𝑠𝑒𝑐, 𝜃 = 1°, 𝑟 = 0.1𝑚, ℎ = 10. The background subtraction result of frame 126,010 

on July 19, 2019, is illustrated in Figure 3.7, where red represents background and blue represents 

foreground.  

 

Figure 3.7 Distinguishing foreground vehicle objects (blue) from the background (blue) to 
facilitate background subtraction 

 

To effectively identify individual vehicles, the foreground points were partitioned based on their 

similarity.  Density-based spatial clustering of applications with noise (DBSCAN) is a popular clustering 

algorithm that generally works well in existing point cloud studies (12). The algorithm groups points 

based on their proximity. It also marks isolated points as outliers, which makes the algorithm less 

sensitive to background points that were not removed from the previous step. The algorithm takes two 

parameters: 

• minPoints: the minimum number of points to form a cluster. Its value should be close to the 

point cloud size of a typical vehicle in the dataset. 

• eps: the searching radius to form a cluster. If eps is too small, a large proportion of the points 

will not be clustered; whereas for a large eps, most of the points will be allocated to the same 

cluster.  

Tuning DBSCAN parameters is a sophisticated process. In addition to the heuristic (12) offered by the 

authors of the DBSCAN, researchers have proposed many different approaches (12, 13) to determine 

the optimal parameters. To find optimal parameters and to conduct sensitivity analysis for DBSCAN are 

beyond the scope of our research. Instead, we estimate these parameters following engineering 

heuristics. We acknowledge that the resulted parameters are sub-optimal but are adequate for the 

vehicle classification task. 

For the test dataset, 𝑒𝑝𝑠 should be slightly smaller than jam density spacing such that two adjacent 

stopped vehicles are not clustered as the same vehicle. However, if 𝑒𝑝𝑠 is too large, the truck’s cabin 

could be identified as a separate object from the trailer. We chose 𝑒𝑝𝑠 to be 1.5 meters. The physical 

meaning of eps is the maximum distance between two points to be considered as one cluster. It is 

chosen to be slightly smaller than the jam density such that even in completely stopped traffic, two 
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adjacent vehicles are not grouped into one cluster. For this reason, it does not need to be tuned under 

different traffic conditions. The other parameter 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 is estimated based on the size of a typical 

truck. The value is chosen such that a typical semi-truck can be detected when it is on the off-ramp 

(measured from the tip of the offramp divider), which is around 60 meters from the sensor. Below is the 

process to estimate the number of points captured by LiDAR when the distance between the truck’s 

front face and LiDAR is 𝑑. The scenario is illustrated in Figure 3.8 with a side view and top-down view,  

where, 

𝑤- width of the truck 

ℎ- height of the truck 

𝜙1- angle of elevation from the LiDAR to the truck 

𝜙2- angle of depression from the LiDAR to the truck 

𝜃- beam width of the truck viewed by the LiDAR 

𝑙- mounting height of the LiDAR 

 

 

Figure 3.8 Detection Illustration 

 

From the top-down view, 

Truck LiDAR 

𝜙1 
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𝑎 = 𝜌𝜃 ≈
𝜌𝑤

𝑑
(1) 

 

Where,  

 𝜌- azimuth resolution of the sensor, represented as the number of points within a unit angle. 

𝛼- number of points per laser channel. 

From the side view, 

𝜙1 = arctan (
ℎ − 𝑙

𝑑
) (2) 

𝜙2 = arctan (
𝑙

𝑑
) (3) 

For the VLP-32c LiDAR with a 10Hz sampling rate, 𝜌 = 10 points per degree. The mounting height of the 

LiDAR 𝑙 = 2.05𝑚. The size limit of trucks defined by the California Department of Transportation 

(Caltrans)1 is used for the calculation, where 𝑤 = 2.59𝑚 (8.5 𝑓𝑒𝑒𝑡), ℎ = 4.26𝑚 (14 𝑓𝑒𝑒𝑡). Then, 𝜙1 =

2.11°, 𝜙2 = 1.96°. Based on 𝜙1,𝜙2, and the elevation angles of the laser channels in Table 3.1, the 

number of laser channels that cover the truck, 𝛽 = 10. The total number of points captured by the Lidar 

from the truck’s front face at distance 𝑑 = 60𝑚 is thus, 

𝑁 = 𝛼 ⋅ 𝛽 ≈
𝛽𝜌𝑤

𝑑
= 247 (4) 

To accommodate trucks that are slightly smaller than the typical size. We choose 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 to 

be 200, which is slightly smaller than 𝑁. 

The object detection result of frame 126,010 on July 19, 2019, is illustrated in Figure 3.9. The 

outliers are represented by blue points, while objects are represented in other distinct colors. 

                                                           
1 https://dot.ca.gov/programs/traffic-operations/legal-truck-access/restrict-process 
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Figure 3.9 Object Detection Result (Blue: outliers; Green: vehicle 1; Yellow: vehicle 2) 

 

3.5.2 Data Association  
The same vehicle object presents in multiple consecutive LiDAR frames. The vehicle object in each LiDAR 

frame needs to be labeled with the same vehicle ID. This research utilized the Simple Online and 

Realtime Tracking (SORT) algorithm to associate the vehicle point cloud from each LiDAR frame to its 

corresponding vehicle object efficiently (14). First, each vehicle point cloud was represented by the 

centroid of the minimum oriented 2D bounding box which was obtained from its ground projection. 

Next, the inter-frame displacements of each vehicle point cloud were estimated using a linear constant 

velocity model—Kalman Filter (15). Finally, the vehicle point clouds were optimally assigned to their 

corresponding vehicle object group using the Hungarian algorithm (16). SORT framework was claimed to 

be capable of handling short-term occlusion caused by passing objects (14). 

4. Vehicle Point Cloud Registration Framework 

4.1 Introduction to Point-set Registration 
Point-set registration is an essential component that is widely used in the field of robotics and computer 

vision. It is the process of estimating the spatial transformation (e.g., translation, rotation, and scaling) 

that aligns two sets of points from the same object with a sensor that captures them from different 

views. Given two corresponding point sets 𝑃 = {𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … , 𝒑𝒎} and 𝑄 = {𝒒𝟏, 𝒒𝟐, 𝒒𝟑, … , 𝒒𝒏} in ℝ𝑑(𝑑 

represents the dimension of each point. In this study, 𝑑 = 3), the goal of registration is to search for an 

optimal rigid transformation matrix 𝑻𝑃𝑄 composed of a rotation matrix 𝑹(𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) and a translation 

vector 𝒕(𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) to match point set 𝑃 with point set 𝑄. The parameters 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 represent the 

counter-clockwise rotation angle of the point set about the 𝑥, 𝑦, 𝑧 axis, respectively. The values 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 

are the translation of the point cloud along the corresponding axis. In a homogeneous coordinate, a 

transformation matrix 𝑻𝑃𝑄 that is used to align point set P and Q can be expressed as: 

𝑻𝑃𝑄 = 𝑻𝑃𝑄(𝜃𝑥, 𝜃𝑦, 𝜃𝑧, 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) = [
𝑹 𝒕
𝟎 1

] (5) 

The 3D rotation about 𝑥, 𝑦, 𝑧 axis (𝑹𝑥 , 𝑹𝑦, 𝑹𝑧) and translation matrix T is shown below: 
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𝑹𝑥 = [

1 0 0 0
0 𝑐𝑜𝑠𝜃𝑥 −𝑠𝑖𝑛𝜃𝑥 0
0 𝑠𝑖𝑛𝜃𝑥 𝑐𝑜𝑠𝜃𝑥 0
0 0 0 1

] , 𝑹𝑦 = [

𝑐𝑜𝑠𝜃𝑦 0 𝑠𝑖𝑛𝜃𝑦 0

0 1 0 0
−𝑠𝑖𝑛𝜃𝑦 0 𝑐𝑜𝑠𝜃𝑦 0

0 0 0 1

] ,

𝑹𝑧 = [

𝑐𝑜𝑠𝜃𝑧 −𝑠𝑖𝑛𝜃𝑧 0 0
𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0 0

0 0 1 0
0 0 0 1

] , 𝑻 = [

1 0 0
0 1 0
0 0 1

𝑡𝑥

𝑡𝑦

𝑡𝑧

0 0 0 1

] (6)

 

The most classic method used for solving point set registration problems is called the iterative closest 

point (ICP) algorithm (17). The ICP algorithm starts with the initial transformation matrix 𝑻𝟎 = (𝑹𝟎, 𝒕𝟎) 

and then selects a set of 𝑘 corresponding points pairs (𝒑𝒊, 𝒒𝒊) between point sets 𝑃 and 𝑄. The distance 

between 𝑃 and 𝑄 can be written as: 

𝑑𝑖𝑠𝑡(𝑻𝑃𝑄(𝑃), 𝑄) (7) 

𝑻𝑃𝑄(𝑃) represents rotating and translating 𝑃 with a transformation matrix 𝑻𝑃𝑄. 𝑑𝑖𝑠𝑡() denotes the 

distance between point sets. In the literature, there are two common ways to define the distance 

between point sets: Point-to-Point (17) and Point-to-Plane distance (18).  

1. Point-to-Point Distance Evaluation (17) 

Assuming there are N corresponding point pairs (𝒑𝒊, 𝒒𝒊), 𝑖 = 1 … 𝑁, the registration problem using point-

to-point distance measurement can be formulated as: 

  𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄
 
1

𝑁
∑‖𝑻𝑃𝑄𝒑𝒊 − 𝒒𝒊‖

2
𝑁

𝑖=1

, 𝑠. 𝑡   𝑅𝑇𝑅 = 𝐼 (8) 

 

2. Point-to-Plane Distance Evaluation (18). 

When Point-to-Plane distances are used as the error metric, the objective function can be formulated as 

the sum of the square error between 𝒑𝒊 and the tangent plane at 𝒒𝒊. The norm of the tangent plane at 

𝒒𝒊 is denoted as 𝒏𝒐𝒓𝒊. The objective function is shown below: 

  𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄
 
1

𝑁
∑‖(𝑻𝑃𝑄𝒑𝒊 − 𝒒𝒊) · 𝒏𝒐𝒓𝒊‖

2
𝑁

𝑖=1

, 𝑠. 𝑡   𝑅𝑇𝑅 = 𝐼 (9) 

The next step of the ICP algorithm is to iteratively find the optimal 𝑻𝑃𝑄 which minimizes the distance 

between 𝑃 and 𝑄. Due to the simplicity of the original algorithm, hundreds of ICP-based variants have 

been proposed over the past two decades; a comprehensive review of ICP-based methods has been 

documented in (19).   

 

4.2 Probabilistic Point-set Registration 
However, the performance of ICP-based approaches suffers from the noisiness, outliers, and occlusions 

of point clouds that commonly occur in a real-world dataset, especially for data collected in outdoor 
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environments (20)(21). Many researchers have investigated probabilistic approaches to improve the 

robustness of point-set registration. The most popular probabilistic-based registration algorithm is called 

Coherent Point Drift (CPD) proposed by Myronenko and Song, which treats registration as a probability 

density estimation problem (21). Instead of using the closest distance to define the corresponding point 

pairs, CPD assigned a probability value to the correspondence according to the proximity between 

points from two pointsets. Several studies followed the path of investigating new probabilistic 

approaches to further enhance the robustness of the registration algorithms (22–24).  Unfortunately, 

such approaches gain robustness while compromising the computation efficiency, limiting their 

application to large datasets. Gao and Tedrake developed a computationally efficient probabilistic-based 

registration model—FilterReg—which adopted Gaussian filtering methods to enhance the model 

efficiency as well as to preserve the robustness and accuracy of the registration process (25). FilterReg 

has been demonstrated to be computationally faster than the modern ICP variants (25). Therefore, this 

research adopted the FilterReg algorithm to estimate transformation matrices between consecutive 

frames.  

 

4.3 Vehicle Point Cloud Registration Framework 
Most of the previous research on point-set registration targeted aligning point sets obtained from 

mobile sensors, where the LiDAR unit is mounted on the top of a moving robot (19) which allows the 

sensor to actively capture the object point clouds. As a consequence, every point cloud density 

associated with the same object is relatively uniform across LiDAR frames. However, for traffic 

surveillance applications, LiDAR sensors are generally mounted on a static pole standing by the roadside 

to passively monitor roadway traffic. As a vehicle traverses the LDZ, the density of its point cloud will 

gradually increase and then decrease due to its proximity to the sensor. Therefore, this study modified 

the existing point-set registration framework to better adapt to the data characteristics of vehicle point 

clouds collected from roadside LiDAR sensors, and then to provide promising vehicle point cloud 

registration results to support the needs of FHWA axle-based vehicle classification. 

4.3.1 Eliminate Redundant Frames  
When a truck is entering or leaving the LDZ (Figure 4.1), the position of the truck is far from the LiDAR 

sensing unit which results in a sparse truck point cloud (Figure 4.2).  
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Figure 4.1 Samples of Truck Frames 

 

Those frames generally descript the driving unit and the rear edge of the truck as shown in Figure 4.2. 

 

Figure 4.2 Samples of Redundant Frames 

 

Such information is captured in the frames associated with the truck when its position is closer to the 

sensor (Figure 4.2). Thus, the sparse point clouds which are captured far from the sensor and have 

limited contribution to the registration process are eliminated to save the computation time. 
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Figure 4.3 Samples of Frames used for Registration 

 

Figure 4.4a presents the point counts profile while the truck is traversing the LDZ. Each point in the 

profile records the total number of points that the truck contained in its corresponding frame. Frame 

22,138 and Frame 22,139 contain the highest number of points across all frames during its travel in the 

LDZ where the highest point count is denoted as 𝑝𝑛𝑚𝑎𝑥. The point count profile is subsequently 

normalized based on 𝑝𝑛𝑚𝑎𝑥 (Figure 4.4b). Finally, the truck point cloud which contains point counts less 

than 20 percent of 𝑝𝑛𝑚𝑎𝑥 were treated as redundant frames and eliminated. 
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Figure 4.4 Elimination of Redundant Frames 

 

4.3.2 Statistical Outlier Removal and Voxel Down Sampling  
After the background subtraction step is performed, there would still be some noise and outlier data 

points which are statistically detectable. Therefore, an outlier removal process is needed prior to vehicle 

point cloud registration. Two procedures are included in this step: statistical outlier removal and voxel 

downsampling. These are suggested by a popular 3D data processing library—Open3D (26). The 

statistical outlier removal method takes the 50 nearest neighbors of a given point in the point cloud and 

considers the points which are 2 standard deviations away from the given point as statistical outliers. 

Next, in order to increase the computational efficiency as well as preserve the structure of point clouds, 

point clouds are further uniformly downsampled using a voxel downsampling approach, where points 

are bucketed into voxel with a size of vs_pre = 0.01 meter and represented by a single point calculated 

through averaging all points within the voxel.  

4.3.3 Vehicle Point Cloud Registration 
After the redundant frames and statistical outliers were removed, a pairwise registration with a coarse-

to-fine strategy was applied on each pair of adjacent frames. The pairwise alignment was accomplished 

through the use of the FilterReg method (25). First, a coarse registration was initially conducted, where 

all point clouds were coarsely downsampled with relatively larger voxel size vs_coarse = 1.5 meters and 

then each pair of point clouds was aligned based on the point-to-point distances metric. Transformation 

matrices were saved and denoted as 𝑻𝑗−1,𝑗
𝑐𝑜𝑎𝑟𝑠𝑒 =  [𝑇12

𝑐𝑜𝑎𝑟𝑠𝑒 , 𝑇23
𝑐𝑜𝑎𝑟𝑠𝑒, 𝑇34

𝑐𝑜𝑎𝑟𝑠𝑒, … , 𝑇𝑛−1,𝑛
𝑐𝑜𝑎𝑟𝑠𝑒], where j is the 

frame index. Second, the 𝑻𝑗−1,𝑗
𝑐𝑜𝑎𝑟𝑠𝑒 was fine-tuned using point-to-plane distances with voxel size vs_fine = 

0.015 meter. The transformation matrices obtained from fine registration was written as 𝑻𝑗−1,𝑗
𝑓𝑖𝑛𝑒

= 

[𝑇12
𝑓𝑖𝑛𝑒

, 𝑇23
𝑓𝑖𝑛𝑒

, 𝑇34
𝑓𝑖𝑛𝑒

, … , 𝑇𝑛−1,𝑛
𝑓𝑖𝑛𝑒

].  Since the basic assumption about vehicle point clouds is that all the 

point clouds associated with the same vehicle should land on the same plane, the vehicles will not 

rotate along the x and y-axis. Hence, the transformation matrices were constrained on x- and y-axis 

rotation, where the corresponding elements in the matrices were set to zero, as shown in Equation 10:  

𝑇𝑗−1,𝑗
𝑔𝑟𝑜𝑢𝑛𝑑

= [

𝑐𝑜𝑠𝜃𝑧 −𝑠𝑖𝑛𝜃𝑧 0 𝑡𝑥

𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0 𝑡𝑦

0 0 1 𝑡𝑧

0 0 0 1

] (10) 

Third, in order to reduce the cumulative errors which could be potentially caused by the sequential 

pairwise registration, the transformation matrices were further optimized using the multiway 

registration which describes the process of merging multiple frames of an object in a global space. In this 
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study, multiway registration was implemented through the use of a pose graph optimization technique 

proposed in (27). The multiway registration process is illustrated as follows. First, the information 

matrices which represent the inverse correlation matrix between two consecutive transformation 

matrices were estimated. Second, a pose graph is defined with the transformation matrices ( 𝑻𝑗−1,𝑗
𝑔𝑟𝑜𝑢𝑛𝑑

) 

as the node and information matrices (𝐴𝑛−1)  as the edges in the graph, where each edge of the pose 

graph connects two nodes. The middle frame of the vehicle object was set to be the reference frame 

with index 𝑗 = 𝑚𝑖𝑑 = 𝑐𝑒𝑖𝑙(
𝑛

2
, 0.5). All frames were aligned to the reference frame during the 

optimization process. The pose graph is optimized using the G2O graph optimization framework (27). 

The final transformation matrices that were used to reconstruct the vehicle point cloud were 𝑻𝑗−1,𝑗
𝑓𝑖𝑛𝑎𝑙

= 

[𝑇12
𝑓𝑖𝑛𝑎𝑙

, 𝑇23
𝑓𝑖𝑛𝑎𝑙

, 𝑇34
𝑓𝑖𝑛𝑎𝑙

, … , 𝑇𝑛−1,𝑛
𝑓𝑖𝑛𝑎𝑙

]. The overall vehicle point cloud registration framework is shown in 

Figure 4.5. 

 

Figure 4.5 Vehicle Point Cloud Registration Framework 

 

When the vehicle is approaching the LiDAR sensor, most of the information is captured from the tractor 

unit. The distinctive details as well as the level of the sparseness of the point cloud on the truck tractor 

make the process of finding corresponding points between two point clouds easier. Hence, minimizing 

the point-to-point distance is capable of aligning the source (Yellow in Figure 4.6) to the target point 

cloud (Blue in Figure 4.6)  firmly. Figure 4.6a presents the point clouds from two consecutive frames. 

Figure 4.6b is the result of the coarse registration with point-to-point distance. 
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Figure 4.6 Examples of Pairwise Registration (Blue: target point cloud, Yellow: Source point 
cloud) 

 

On the contrary, while the truck is just passed the LiDAR sensor, points are densely distributed on the 

side view of the truck. Such point clouds contained a limited number of prominent features to align 

them by just minimizing the point-to-point distance. Figure 4.6c shows the failure case after coarse 

registration using the point-to-point distance. However, the dense point distribution on the truck sides 

creates well-defined planes which allow the fine registration with a point-to-plane strategy to 

successfully further tighten two point clouds (Figure 4.6d). 

 

4.3.4 Registration Framework Comparison 
The main purpose of the vehicle registration process is to enrich the information of the vehicle point 

clouds through merging multiple frames and to precisely portray the vehicle characteristics such that 

vehicles can be classified in detail. Therefore, if the reconstructed vehicle contains essential features 

which can be used to visually identify its vehicle class without any significant misalignment, it will be 

considered as a well-registered vehicle point cloud. Otherwise, it will be considered as a poor-registered 

vehicle point cloud. In this study, the vehicle point clouds registration precision (VPCRP) is defined as: 

𝑉𝑃𝐶𝑅𝑃 =
𝑁𝑤𝑟

𝑁𝑤𝑟 + 𝑁𝑝𝑟

(11) 

Where 𝑁𝑤𝑟 represents the number of well-registered vehicle point clouds and 𝑁𝑏𝑟  is the number of the 

poor-registered point clouds. The new framework has been compared with the previous registration 

framework through VPCRP value. The previous registration framework (28) presents a VPCRP value of 

0.168, where the new registration framework has a VPCRP value of 0.024. The registration performance 

has been significantly improved by adopting the new framework proposed in this study (Table 4.1). 
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Table 4.1 Registration Results Comparison 

FHWA-CA 
Classes 

Previous Registration Framework (28) The New Registration Framework 

Class 8 

  

Class 9 

  

Class 10 

  

Class 11 

  

Class 12 

  

Class 14 

  
 

4.3.5 Registration Performance with Missing Frames 
The data used in this study was collected from the single-lane off-ramp area. Therefore, the occluded 

vehicle point clouds were rarely observed at this data collection site. To test the robustness of the new 

registration framework, random frames for a truck object were dropped to simulate the missing frames 

scenario caused by vehicle occlusions. Figure 4.7 demonstrates the experiment of the missing frame 

test.  
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Figure 4.7 Illustration of Experiment Design 

 

The duration that each vehicle traversing the LDZ was divided into three equal time slots denoted by 

Section 1, Section 2, and Section 3. Since vehicle occlusions generally happen on consecutive frames. 𝑚 

random consecutive frames were dropped from each section at each time. Table 4.2 presents the results 

of the experiment. 
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Table 4.2 Experiment Results 

Number of 
Consecutive 
Frames 

 
Section 1: Approaching the LiDAR Sensor 

 
Section 2: In front of the LiDAR Sensor 

 
Section 3: Leaving the LiDAR Sensor 

0 

 
 
 
2 

   

 
 
3 

   

 
 
4 

   

 
 
5 

   

 
 
6 

   

7 Completely miss aligned Completely miss aligned Completely miss aligned 
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When 5 consecutive frames are dropped, meaning that 0.5 seconds of data are missing, from either 

Section 1 or Section 2, the reconstructed point cloud is still able to preserve the essential information 

that can be used to identify their FHWA classes. For Section 3, the reconstruction framework fails when 

the 4 consecutive frames were dropped. The random 5 consecutive frames dropped from Section 3 

were the last 5 frames used for the vehicle reconstruction. Therefore, nearly a quarter of the points on 

the rear truck wheel were missing. 

This experiment demonstrated that the proposed framework is capable of reconstructing vehicle objects 

with 3-5 consecutive missing frames. A comprehensive vehicle occlusion analysis will be explored after 

real-world occlusion data are collected. 

 

5. FHWA Axle-based Classification 
The lower profile of a truck contained information related to its axle and general body configuration 

which defines their FHWA-CA classes. Compared to each frame of a truck object, the lower profile of the 

reconstructed truck point cloud is well-defined (Figure 5.1).  

 

Figure 5.1 A truck object represented by a sparse point cloud from a single frame (Left) vs. a 
dense point cloud representation reconstructed from multiple frames (Right). 

 

Therefore, in this section, essential features from the lower profile of the reconstructed truck point 

cloud were extracted and used as inputs for the vehicle classification model. Next, a deep ensembled 

neural network model was developed to assign vehicle point clouds to their corresponding FHWA-CA 

classes. 

 

5.1 Feature Extraction 
Statistical outliers on the reconstructed vehicle point cloud were further removed prior to the feature 

extraction (26). Subsequently, the pose of the vehicle point clouds was adjusted to align them with the 

𝑧𝑦 plane using transformation matrix 𝑇𝑚𝑖𝑑−1,𝑚𝑖𝑑 since the middle frame was used as the reference 

frame in the pose graph optimization. Then, the 3D point cloud was projected to 𝑧𝑦 plane to obtain its 

2D representation of each vehicle. The feature extraction process is shown Figure 5.2.  
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Figure 5.2 Feature Extraction 

 

First, a rolling window with a size of 0.1 was created, where the minimum 𝑧 value within the window 

was calculated. The size of the rolling window should be less than the radius of a regular wheel of a 

truck. The minimum 𝑧 value rolling window captures the raw lower profile of each vehicle point cloud. 

Second, in order to obtain a better representation of the lower profile, the raw profile was smoothed 

using Hann window (29) which is formulated as:  

𝑤(𝑖) = 0.5 − 0.5 cos (
2𝜋𝑖

𝑀 − 1
)    0 ≤ 𝑖 ≤ 𝑀 − 1 (12) 

 Where 𝑖 represents the index of each point in the profile. M is the window size of the filter. 

The smoothed lower profile of the truck point cloud presents both the axle and general body 

configuration of the truck. Third, the smoothed lower profiles were interpolated using cubic spline 

interpolation, and then 200 equally spaced z values were extracted from the interpolated profile to align 

the dimension of the training instances. Finally, the interpolated profile was normalized between the 

limits of -1 to 1. 
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Figure 5.3 Illustration of Features 

 

As Figure 5.3 shows, the valley in box 1 indicated the steering axle of the truck. Valleys in box 2 

represent the drive axles of the tractor and the valleys in box 3 correspond the spread axles of the 

trailer. The peak shown in box 2 presents the connector between the tractor and trailer unit.  

 

5.2 Bootstrap Aggregating Deep Neural Network for Vehicle Classification 
Neural Network models have been proven to be able to approximate any complex non-linear mapping 

functions (30). Compared to a shallow neural network, the multi-layer structure of a deep neural 

network model allows it to accomplish the same task with exponentially lower computation complexity 

(31). Therefore, this study developed a deep neural network (DNN) with dropout regularization (32) to 

assign each vehicle point cloud to its corresponding FHWA-CA classes. The DNN model comprised 5 

hidden layers with 512 neurons on each layer. Thirty percent of neurons were randomly dropped out on 

the last two hidden layers to avoid overfitting. The Rectified Linear Unit (ReLU) (33) with the He 

initialization method (34) was applied to each hidden layer and the Softmax activation function with 

Xavier initialization (35) was used on the output layer. The learning curve shown in Figure 5.4 traces the 

model performance histories during the training and testing process. After 100 epochs, the overall 

accuracy on the training set keeps gradually increasing while the testing accuracy converges to 0.95. 

Hence the model training converged after 100 epochs. 



Investigation of Truck Data Collection using LiDAR Sensing Technology along Rural Highways 
 
 

45 
 

 

Figure 5.4 Learning Curve 

 

In order to reduce the variability of the DNN prediction results, a bootstrap aggregating (bagging) (36) 

ensemble approach was applied. In this study, the bagging ensemble method resamples the training set 

with stratified bootstrap resampling strategy (37) to ten sets of bootstrapped training samples which 

were used to build ten different DNN models with the same model structure. The final prediction results 

were determined by the highest averaged prediction score of the ten DNN models. 

5.3 Model Results 
This section first presents the test results of the proposed model using a normalized confusion matrix 

and then provides the error analysis on the misclassified vehicles. In addition, the proposed model was 

compared with the state-of-the-art FHWA axle-based classification model using a LiDAR sensor. 

5.3.1 Classification Results and Analysis 
The normalized confusion matrix of the classification model is presented in Figure 5.5.  
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Figure 5.5 Normalized Confusion Matrix for the Test Set 

 

Each row of the red-colored confusion matrix is normalized by a total number of groundtruth vehicles in 

their corresponding classes. Therefore, the diagonal elements represent the recall values of each class, 

which was also referred to as “Correct Classification Rate” (CCR) in some literature (8, 38). Each column 

of the green-colored confusion matrix is normalized according to the total number of predicted values 

for each class. Hence, the diagonal elements are the precision values of each class. 

Based on the normalized confusion matrices, the proposed model is able to correctly classify Classes 5, 

6, 8, 11, and 14 with over 80 percent CCR. However, the model is weak in predicting Class 10 and Class 

12. Interestingly, the precision value in Class 10 is higher than the recall value.  This implies that the 

implementation of the model is expected to yield very few predictions on Class 10, but most of them are 

expected to be correctly classified. This is quite ideal for the model implementation. Conversely, Class 12 

has a higher recall than its precision value which would cause that the model to return more Class 12 

predictions, with most of them misclassified from other classes. 

The boxplot in Figure 5.6 shows the model recall distribution of the DNN models which are built with 10 

sets of bootstrapped training instances. The bar plot represents the training sample size for each class. 
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Figure 5.6 CCR Distribution across All Classes 

 

As Figure 5.6 shows, the variability of the prediction results increases as the training sample size 

reduces, especially for Classes 10 and 12. Insufficient training samples were used to learn the key 

features from Classes 10 and 12 trucks which result in high variances in their prediction outcomes. In 

addition, Classes 2 and 3, passenger vehicles, are rarely observed at the entrance of the truck scale and 

those vehicles have larger diversity in terms of their body shape. Therefore, the model prediction 

variance is also high for Classes 2 and 3. Even though there is a limited number of training samples for 

Class 14, its prediction results are still promising since Class 14 represents a small homogeneous group 

of trucks in this dataset. 

With sufficient training samples, the proposed classification model is capable of accurately 

distinguishing Classes 8 and 9 with overlapping body configuration (Figure 5.7a and b). However, classes 

with minor differences in their axle configuration but with the same body type are hard to distinguish 

when the training instances are not adequate (Figure 5.7c, d, e, and f). Consequently, in order to further 

enhance the model performance on Classes 10 and 12, the training dataset needs to be enriched in 

future studies. 
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Figure 5.7 Overlapping Body Configurations 

 

5.3.2 Model Comparison 
Table 5.1 provides a comparison between the model developed in this study with the state-of-the-art 

LiDAR-based classification model which used the single frame of an object to classify vehicles on the 

basis of the FHWA scheme (9). 
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Table 5.1 Comparison between developed model (Bagging DNN) vs state of the art (Random 
Forest) 

FHWA-CA 
CCR  

(Bagging 
DNN) 

Testing 
Samples 

Classes defined in (9) 
CCR (Random  

Forest) (9) 
Testing 

Samples (9) 

Class 2 
0.75 20 

Passenger Vehicle 0.84 150 

Class 3 Four-tire Single Unit 0.70 69 

Class 4 None None Bus 1.00 20 

Class 51 0.97 934 Two-axle, six-tire, single-unit truck 0.44 17 

Class 6 0.95 208 Three-axle, single-unit truck 0.00 4 

Class 7 0.76 17 
Four or fewer axle, single-trailer 

truck 
None None 

Class 8 0.84 117 None None None 

Class 92 0.99 1,746 Five-axle, single-trailer truck 1.00 17 

Class 10 0.33 12 None None None 

Class 11 0.85 13 None None None 

Class 12 0.50 2 None None None 

Class 13 None None None None None 

Class 14 1.00 31 None None None 

Average 
CCR 

0.79 - - 0.76 - 

Note: 1Class 5 used in this study contained a two-axle truck pulling a small trailer which was not included in (9). 2 In the FHWA-CA scheme, Class 
9 type 32 was separated from the rest of Class 9 truck and labeled as Class 14. In (9), Class 14 trucks are merged into Class 9 trucks. 

Compared to the previous model (9), the new classification framework proposed in this study is able to 
classify vehicles in much more detail with significantly higher accuracy, especially for heavy-duty trucks 
from Class 8 to Class 14 which have disproportionally adverse impacts on pavement (39) and the 
environment (40). 

 

6. Truck Body Type Classification  
Transportation agencies have been increasingly interested in collecting truck body configuration data 

due to its strong association with industries and freight commodities, to better understand their distinct 

operational characteristics and impacts on infrastructure and the environment. In this section, this 

section explored the use of a novel deep neural network architecture - PointNet - to classify truck based 

on their body configurations. 

6.1 PointNet-based Truck Classification Model 

6.1.1 The Deep Representation Learning Algorithm: PointNet 
The reconstructed 3D point cloud is an irregular type of geometric data structure, where each point is 

represented by its cartesian coordinates (𝑥, 𝑦, 𝑧). A conventional convolution neural network requires a 

regular data format such as image pixels and 3D voxels as inputs. Therefore, the point cloud cannot be 

directly fed into a typical convolutional architecture. Point clouds are generally transformed to other 

data types for classification purposes. In the literature, transportation researchers usually extract high-

level physical characteristics from either raw points (9) or transformed point clouds, e.g., 2D images (1–

3, 7) or 3D voxels (8) to solve the truck classification problem. Finally, these high-level features are used 
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as inputs of classic machine learning algorithms. However, such data transformations and aggregations 

can introduce quantization error and further conceal the natural invariances of the point cloud data 

(41), which affects the accuracy and the variety of types of trucks that can be classified. In order to 

accommodate the characteristics of the point cloud data structure for improving truck classification 

accuracy, a novel deep neural network architecture—PointNet (41)—was adopted in this research. This 

neural network architecture can directly adopt point clouds as inputs and detect critical features for 

classification from the raw inputs. The architecture of PointNet is shown in Figure 6.1. 

 

Figure 6.1 PointNet Architecture (41) 

 

PointNet primally benefits from two components of its architecture: the shared multi-layer perceptron 

(MLP) and the max-pooling function. The shared MLP was constructed using 1D convolution with a 

kernel size of 1, which provides a dense connection across points with the shared parameters (weight 

and bias terms). This means that the spatial encoding of each point can be learned by the shared MLP. A 

max-pooling layer was applied as a symmetric function to gather information from all the points, in 

order to resolve the invariance to permutation issue of the point cloud data structure. A function 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) of N variables are invariant under random permutation if the function value does not 

change over the permutation of its variables. The generic representation of symmetric functions can be 

written as: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) = 𝑓(𝑥𝑁, 𝑥2, … , 𝑥1) = 𝑓(𝑥2, 𝑥1, … , 𝑥𝑁) = ⋯ (13) 

The max-pooling function extracted the global critical feature of each truck point cloud and the overall 

model structure was able to learn the skeleton of each object. Since the truck body types are generally 

invariant and distinct in shape, PointNet ideally fits the task of truck body classification. 

6.1.2 PointNet for Truck Classification Model 
In this study, the PointNet architecture was adopted to classify truck body types in detail. Prior to the 

training process, the reconstructed point cloud needed to be regularized. First, the variable number of 

data points in reconstructed point clouds was uniformly downsampled to a common number of points 

as inputs into the PointNet. The downsampling process contained three steps. First, a regular voxel grid 

with a resolution of 5 percent was generated for each reconstructed truck point cloud, where those 

points were bucketed into voxels. Second, each occupied voxel was represented by a single point, which 

was calculated by taking the average of all points within each voxel grid. Finally, 1024 points suggested 

by Qi et al (41) were randomly sampled from the uniformly downsampled point cloud. A truck point 
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cloud 𝑘 can be written as a 3D point set, 𝑝𝑘 = {(𝑥𝑗
𝑘, 𝑦𝑗

𝑘 , 𝑧𝑗
𝑘)|𝑗 = 1, … , 𝑛} ,where n = 1024 in this study. 

After the downsampling process, the centroid of the truck point cloud 𝑘 was moved to the (0,0,0) point 

in the coordinate and was represented as 𝑝𝑘𝑐 = {(𝑥𝑗
𝑘𝑐, 𝑦𝑗

𝑘𝑐 , 𝑧𝑗
𝑘𝑐)|𝑗 = 1, … , 𝑛}. The operation along the x 

axis is presented in Equation 14, where y and z follow the same calculation. 

𝑥𝑗
𝑘𝑐 = 𝑥𝑗

𝑘 −
𝑚𝑎𝑥{𝑥𝑗

𝑘} − 𝑚𝑖𝑛{𝑥𝑗
𝑘}

2
(14) 

Then, the truck point cloud 𝑘 was normalized to a unit sphere and denoted by 𝑝𝑘𝑐𝑛 =

{(𝑥𝑗
𝑘𝑐𝑠, 𝑦𝑗

𝑘𝑐𝑠, 𝑧𝑗
𝑘𝑐𝑠)|𝑗 = 1, … , 𝑛}. The operation along the x-axis is presented in Equation 15, where y and 

z follow the same calculation. 

𝑥𝑗
𝑘𝑐𝑠 =

𝑥𝑗
𝑘𝑐

𝑚𝑎𝑥{𝑥𝑗
𝑘𝑐}

(15) 

The point cloud preparation step is shown in Figure 6.2. Here, a reconstructed point cloud of an auto 

transport with a conventional tractor is taken as an example. 

 

Figure 6.2 Point Cloud Preprocessing 
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During the model training process, two data augmentation methods were applied (41). First, each 

training instance was randomly rotated along the z-axis. Second, each point of the truck point cloud was 

jittered with a Gaussian noise which followed a 𝑁(0, 0.02) distribution to increase the diversity of the 

training instances. 

The truck classification model was trained on 5,360 reconstructed truck point clouds with an RTX 2080 

super GPU and took approximately 3 hours to converge. The learning process of the truck classification 

model is presented in the learning curve (Figure 6.3). The model accuracy on both training and test 

dataset improve in a similar trend until 100 epochs. After this point, the model performance gradually 

plateaus on the test dataset but continues improving on the training dataset. The model converged after 

250 epochs. 

 

Figure 6.3 Learning Curves 

 

6.2 Model Averaging 
A multiple layer structure with nonlinear activation functions on each layer provides deep neural 

networks with the ability to approximate any complex mapping function (42). However, deep neural 

network models generally suffer from high variance issues, where model performance varies 

significantly by dataset (43).  Hence, model averaging strategies were explored to reduce the model 

variance and further enhance the model performance. The simplest way to apply model averaging on 

deep neural networks is to train multiple deep neural networks with different initial values and have all 

the models cast their votes. In this study, two model averaging methods were explored, and are 

explained in the next subsection. 

6.2.1 Simple Model Averaging (SMA) 
Let 𝑚𝑎 = {𝑚1, 𝑚2, . . . , 𝑚𝑛} denote n PointNet models trained with various initial values. 𝑐𝑏 denotes the 

class labels. 𝑝(𝑐𝑏|𝑚𝑎) represents the probability that model 𝑚𝑎 predicted class 𝑐𝑏. The equation of SMA 

is shown below. 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑏∈𝐶

∑ 𝑝(𝑐𝑏|𝑚𝑎)

𝑛

𝑎=1

(16) 
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SMA assumes that 𝑚𝑎 produced an equal contribution to the final decision and gave the prediction 

results by averaging all the votes of the candidate models. 

6.2.2 Bayesian Model Averaging (BMA) 
Unlike simple model averaging, which treats candidate models 𝑚𝑎 equally, Bayesian model averaging 

assign a prior probability, presenting the subjective credibility of the model predicting a certain class. 

The posterior probability derived from the candidate models was used as the final prediction score (44, 

45). In the case of a class 𝑐 to be predicted based on training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 using 𝑛 PointNets with 

initial value drawn from a normal distribution, the Bayesian model averaging provides final predictions 

based on the law of total probability: 

𝑝(𝑐) = ∑ 𝑝(𝑐𝑏|𝑚𝑎)𝑝(𝑚𝑎|𝐷𝑡𝑟𝑎𝑖𝑛)

𝑁

𝑎=1

(17) 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑏∈𝐶

∑ 𝑝(𝑐𝑏|𝑚𝑎)𝑝(𝑚𝑎|𝐷𝑡𝑟𝑎𝑖𝑛)𝑁
𝑎=1 (18)

As Equation 18 presents, the averaged model assigns higher weights to the candidate model which 

performs better for the specific class. The final prediction relies on the weighted average of the 

prediction scores. 

 

6.3 Model Results 
Five PointNet models were trained with different initial values. Figure 6.4 shows the CCR of each class 

from five different models.  
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Figure 6.4 Prediction Variance Analysis 

 

The same model structure yielded high variance to predict certain classes. For instance, model 4 

obtained a CCR of 0 percent on predicting open-top vans, where model 5 was able to achieve a CCR of 

75 percent on predicting the same class. Conversely, model 4 provided a CCR of 90 percent for single-

unit stake body trucks. But the CCR for model 5 on predicting the same class was only 83 percent. Figure 

6.4 thus reveals the need for an ensemble model. Auto (Conventional) and Auto (pickup) distinguish the 

tractor units of auto transport trucks. “Pickup-Utility-Service wTrailer” and “Platform wTrailer” are used 

to identify a straight driving unit pulling a small trailer. “End Dump wTrailer” considers an end dump 

truck pulling either a small trailer or another large dump trailer. “Other” represents all the truck types 

that do not fit the definition of the previous 30 classes. “Tank Tank” represents a tank tractor with a 

tank trailer, which specifically belongs to Class 14 in the California-modified FHWA scheme (46). The 

results from SMA and BMA are presented in Table 6.1. 
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Table 6.1 Results of Body Classification Model 

  Model 1 Model 2 Model 3 Model 4 Model 5 SMA BMA 
Test 
Sample 

20ft Container 0.98 0.98 1.00 1.00 0.93 1.00 1.00 59 

40ft Container 1.00 1.00 1.00 1.00 1.00 0.99 0.99 196 

53ft Container 0.94 0.97 0.97 0.97 0.97 0.96 0.96 170 

Auto (Conventional) 0.71 0.94 0.91 0.88 0.82 0.91 0.91 34 

Auto (Pickup) 0.90 0.95 0.79 0.90 0.74 0.89 0.89 19 

Bobtail 1.00 1.00 1.00 1.00 1.00 1.00 1.00 109 

Cab-over Enclosed Van (SU) 0.95 0.98 0.98 0.99 0.97 0.99 1.00 148 

Concrete 1.00 1.00 1.00 1.00 1.00 1.00 1.00 16 

Conventional Enclosed Van (SU) 0.97 0.96 0.97 0.97 0.97 0.97 0.97 362 

Drop Frame Van (Semi) 0.82 0.82 0.79 0.82 0.86 0.82 0.79 28 

Dry Bulk Transport 1.00 1.00 0.94 0.94 0.94 1.00 1.00 16 

Enclosed Van (Multi) 0.80 0.80 1.00 0.80 0.80 0.80 0.80 5 

Enclosed Van (Semi) 0.99 0.98 0.99 0.98 0.99 0.98 0.99 928 

End Dump (SU) 0.81 0.89 0.92 0.89 0.89 0.88 0.88 26 

End Dump (Semi) 0.83 1.00 0.96 0.91 0.87 0.96 0.96 23 

End Dump wTrailer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7 

Low Boy Platform 0.82 0.84 0.89 0.82 0.93 0.91 0.91 56 

Low Loading 0.86 0.91 0.88 0.90 0.90 0.90 0.89 116 

Open Top Van 0.00 0.25 0.25 0.00 0.75 0.25 0.00 4 

Passenger Vehicle 0.83 0.83 0.87 0.73 0.77 0.80 0.80 30 

Pickup-Utility-Service 0.81 0.71 0.76 0.73 0.79 0.79 0.79 94 

Pickup-Utility-Service wTrailer 0.79 0.67 0.88 0.75 0.71 0.88 0.83 24 

Plaform wTrailer 0.80 0.77 0.80 0.80 0.83 0.83 0.83 30 

Platform (SU) 0.87 0.86 0.90 0.86 0.84 0.90 0.89 135 

Platform (Semi) 0.91 0.93 0.93 0.91 0.91 0.94 0.94 160 

Stake Body (SU) 0.81 0.88 0.87 0.90 0.83 0.89 0.89 114 

Tank (Multi) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5 

 Tank (SU) 0.64 0.55 0.73 0.55 0.64 0.73 0.64 11 

Tank (Semi) 0.94 1.00 0.99 0.96 0.99 0.99 0.99 83 

 Tank Tank 1.00 0.96 1.00 1.00 1.00 1.00 1.00 27 

Others 0.29 0.37 0.45 0.47 0.22 0.37 0.18 49 

Accuracy 0.92 0.93 0.94 0.93 0.93 0.94 0.94 3,084 

Avg CCR 0.84 0.86 0.88 0.85 0.87 0.88 0.86 3,084 

Note: SU: Single-Unit Truck; Semi: Tractors pulling Semi-Trailer; Multi: Tractors pulling multiple trailers. 

Cells labeled with red colors represent CCR lower than 0.80. Green colors highlight the benefits of using 

the SMA model. 

 

After applying model averaging across five PointNet models, the number of classes with CCR value less 

than 80 percent was significantly reduced. The model ensemble outperformed most of the individual 

models in terms of accuracy, average class CCR, and F1 score. SMA and BMA presented the same level of 

accuracy according to these aggregated measurements. The SMA outperforms the BMA method in 

terms of model performance on drop frame vans (Semi), low loading truck, open-top vans, 

pickup/utility/service with trailer, and single-unit tank while the CCR of single-unit cab-over enclosed 

van was slightly reduced. The two-sided non-parametric Wilcoxon signed-rank test (47), was conducted 
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to test if a significant difference existed between the results of SMA and BMA. The p-value of 0.02 

showed the null hypothesis for the difference between SMA and BMA was significant, and at a 

significance level of 5 percent could be rejected. Therefore, the performance of SMA is significantly 

better than the BMA method. 

A closer assessment of the minority classes found that the performance of the ensembled PointNet was 

not significantly biased towards the majority class since the minority class presented low variations in 

their body type design. Hence, the ensemble PointNet presents a promising result in solving truck body 

type classification problems.  

For illustration purposes, in Table 6.2 and Table 6.3, the “Others” class was split into “Others (SU)” and 

“Others (wTrailer)” to denote single-unit trucks and trucks with trailer(s) that were misclassified with 

other types of trucks respectively. 
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Table 6.2 Confusion Matrix for single-unit truck and passenger vehicles (SMA Approach) 

 Bobtail 
Cab-over 
Enclosed 
Van (SU) 

Concrete 
Mixer 

Conv 
Enclosed 
Van (SU) 

End 
Dump 
(SU) 

Low 
Loading 

Passenger 
Vehicle 

Pickup-
Utility-
Service 

Platform 
(SU) 

Stake 
Body 
(SU) 

Tank 
(SU) 

Others 
(SU) 

Test 
Counts 

CCR 

Bobtail 109 0 0 0 0 0 0 0 0 0 0 0 109 1.00 

Cab-over Enclosed Van (SU) 0 147 0 0 0 0 0 0 0 1 0 0 148 0.99 

Concrete 0 0 16 0 0 0 0 0 0 0 0 0 16 1.00 

Conv Enclosed Van (SU) 1 2 0 351 0 7 0 1 0 0 0 0 362 0.97 

End Dump (SU) 0 0 0 0 23 0 0 0 1 2 0 0 26 0.88 

Low Loading 0 1 0 7 0 104 0 4 0 0 0 0 116 0.90 

Passenger Vehicle 0 0 0 0 0 1 24 5 0 0 0 0 30 0.80 

Pickup-Utility-Service* 0 2 0 2 0 1 3 74 6 4 0 1 94 0.90 

Platform (SU) 1 0 0 2 0 0 0 3 121 5 1 2 135 0.79 

Stake Body (SU)** 0 0 0 2 1 0 0 3 4 102 0 1 114 0.89 

Tank (SU) 0 0 0 0 0 0 0 0 0 3 8 0 11 0.73 

Other (SU) 0 0 0 0 0 1 0 3 4 1 0 18 27 0.67 

Note: Cells labeled with red colors represent CCR lower than 0.80. The yellow cells highlight the correctly classified numbers. The grey cells point 

to the main causes of the misclassification. “Conv” is short for “Conventional”. *This row does not sum up to 94, since one of the 

pickup/utility/service trucks was misclassified with pickup/utility/service with a trailer. ** In this row, one stake body (SU) was misclassified as a 

semi-trailer platform. This was identified as mislabeling through visual verification.  
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Table 6.3 Confusion Matrix for a truck with Trailer(s) (SMA Approach) 

Note: * In this row, a semi-trailer enclosed van was misclassed to a pickup/utility/service truck. This was identified as mislabeling through visual 

verification. ** “P/U/S wTrailer” represents the pickup/utility/service truck 

 

  
20ft 

Container 
40ft 

Container 
53ft 

Container 
Auto 

(Conv) 
Auto 

(Pickup) 

Drop 
Frame 
(Semi) 

Dry Bulk 
Transport 

Enclosed 
Van  

(Multi) 

Enclosed 
Van  

(Semi) 

End Dump 
(Semi) 

End Dump 
wTrailer 

Low  
Boy 

Platform 

Open 
Top  
Van 

P/U/S 
wTrailer 

Plaform 
wTrailer 

Platform 
(Semi) 

Tank 
(Multi) 

Tank 
(Semi) 

Tank 
Tank 

Others 
(wTrailer) 

Test  
Counts 

CCR 

CCR in 

(8) 

 

20ft Container 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 1.00 0.96 

40ft Container 0 195 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196 0.99 0.98 

53ft Container 0 0 164 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 170 0.96 - 

Auto (Conv) 0 0 0 31 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 34 0.91 0.91 

Auto (Pickup) 0 0 0 1 17 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 19 0.89 - 
Drop Frame 

(Semi) 0 0 0 0 0 23 0 0 4 0 0 0 0 0 0 0 0 0 0 1 28 0.82 - 

Dry Bulk 
Transport 

0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1.00 - 

Enclosed Van 
(Multi) 

0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 5 0.80 - 

Enclosed Van 
(Semi)* 0 0 4 0 0 5 0 0 913 0 0 0 2 1 0 0 0 0 0 2 928 0.98 0.94 

End Dump 
(Semi) 

0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 1 0 0 0 0 23 0.96 0.85 

End Dump 
wTrailer 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 7 1.00 - 

Low Boy 
Platform 0 0 0 0 0 0 0 0 0 0 0 51 0 1 0 4 0 0 0 0 56 0.91 - 

Open Top Van 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 4 0.25 - 

P/U/S 
wTrailer** 0 0 0 0 1 1 0 0 0 0 1 0 0 21 0 0 0 0 0 0 24 0.88 - 

Plaform 
wTrailer 1 0 0 0 0 0 0 0 0 0 1 0 0 2 25 0 0 0 0 1 30 0.83 - 

Platform 
(Semi) 0 0 4 1 0 0 0 0 0 1 0 1 0 0 0 150 0 0 0 3 160 0.94 0.94 

Tank  
(Multi) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 1.00 - 

Tank 
 (Semi) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 82 0 0 83 0.99 0.97 

Tank 
 Tank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 27 1.00 - 

Others 
(wTrailer) 0 0 7 0 1 1 0 2 4 0 0 0 2 0 1 2 1 1 0 18 40 0.45 - 
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A comparison between the CCR values in Table 6.2 and Table 6.3 shows that the model was less 

competent in predicting single-unit trucks, where 18 percent of single-unit vehicles have an average CCR 

less than 0.80, while only 5 percent of trucks pulling trailer (s) have an average CCR less than 0.80. This 

was likely caused by the similarity across body types. For example, with different shapes of commodities 

or devices carried, single-unit platform trucks shared similar body configurations with 

pickup/utility/service trucks, single-unit stake body trucks, single-unit tank trucks, and single-unit dump 

trucks. In addition, the “passenger vehicle” class included 4-tire small pickups which shared a similar 

profile with 6-tire utility pickups that were categorized in the “pickup/utility/service” class. 

Table 6.3 presents the confusion matrix of 19 truck body types, primarily including tractors pulling semi-

trailers, tractors pulling a large single trailer, and tractors pulling multiple trailers. The body type 

confusion occurred primarily among auto transports, low boy platform, and semi-trailer platform trucks. 

Similar to the issues shown in single-unit trucks, the loading on the trailers is likely the cause of 

misclassifications across these three types. The performance of the SMA PointNet was compared with 

the state-of-art LiDAR-based classification model. SMA PointNet presented higher CCR values than the 

previous model across most classes, except semi-trailer platforms. In this sense, the ensemble PointNet 

can be considered superior to the state-of-the-art truck classification model (8). Platforms loaded with 

53ft box containers were misclassified as 53ft box containers loaded on a container chassis, which was 

not included in the previous trailer type classification scheme (8). Classifying trucks in more detail 

naturally increases the chances of misclassification among similar body types. Therefore, balancing the 

total number of trucks that can be classified and high CCR values across all classes is critical. 
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7. LiDAR intensity-based Truck Surface Characterization 

7.1 Introduction 
Aside from their physical attributes, fleet identification features such as logos found on many trucks can 

be used to infer their industry affiliation and can serve as another dimension of truck characterization to 

provide further insights into their activity patterns.  Along with the depth and geometry information as 

mentioned in previous chapters, LiDAR sensors provide an additional attribute widely named as 

‘intensity’(I). LiDAR intensity is the measured power (returned) of a reflected laser beam from a target 

surface. These intensity values are indicator of surface reflectance of the target surface. For the 

Terrestrial LiDAR Scanner (TLS) in side-fire configuration, these intensity values are influenced by factors 

such as range (R), angle of incidence (𝛼), target surface roughness, and other instrument related 

variables. These factors are depicted in  Figure 7.1.   A significant advantage of LiDAR intensity over 

conventional images is its independence of ambient lighting, which allows it to be effective in poor 

lighting conditions, such as twilight and night times. This capability makes LiDAR a candidate technology 

for capturing truck fleet attributes. 

 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑛ො 

Range, 𝑅 Angle of incidence, 𝛼 

Emitted and 
reflected 

laser beam 

 Figure 7.1 Factors affecting the LiDAR intensity 

 

 

Figure 7.2 Illustration of need for Intensity homogenization 

 

The effect of above stated factors on LiDAR intensity can be seen in Figure 7.2. The three scans are 

colored by LiDAR intensity values ranging from 0-255 changing from blue shade for lower values to red 

shade for higher values. As a truck passes through the LiDAR Detection Zone (LDZ), the intensity values 

corresponding to the same part of truck change. This can be confirmed with the visual examination of 

Figure 7.2. For example, let us observe the intensity values corresponding to rear section of the truck 

body in the three scans. Intensity values change from blue shade to green and then back to blue shade. 
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If we would like to characterize the truck surfaces using LiDAR intensity values, it is necessary to 

homogenize the Intensity values such that same part of truck will have same intensity values 

irrespective of its position in LDZ. Homogenized LiDAR intensity values have potential and may enable 

consistent truck surface characterization even across multiple sites. 

7.2 Proposed LiDAR Intensity Homogenization Framework 
Radiometrically processed LiDAR intensity has been used in applications of Airborne LiDAR Scanning 

(ALS) for land cover estimation and classification, ecological monitoring, etc.(48). Terrestrial LiDAR 

Scanning (TLS) based intensity data has been used to investigate pavement markings (49–52), traffic sign 

reflectivity assessment (53), autonomous driving(48) etc. To the best of our knowledge, this is the first 

attempt of using LiDAR intensity data to characterize the surfaces of commercial vehicles. More 

comprehensive list of LiDAR intensity applications can be found in Table 1 of the reference (54). 

7.2.1 Literature Review 
LiDAR intensity can be expressed as the strength of backscattered laser echo from the scanned surface 

and is influenced by multiple complexly interacting factors. These factors include the geometry of the 

scanned surface, angle of incidence, range, environment, and the sensor itself. From literature, Range(R) 

and angle of incidence (𝛼) are identified as the two most important variables that needs to be corrected 

for their influence on intensity (53). Majority of the intensity correction methods from literature involve 

lab-based calibration of empirical models involve estimation of parameters using standard targets of 

known intensity values. A comprehensive list of the empirical models from literature can be found in 

Table 4 of  reference (54) and Table 2 of reference (48).  

7.2.2 Proposed LiDAR intensity correction framework 
Though empirical model driven Intensity correction methods can be accurate, they require 

calibration/estimation of parameters for every sensor in the lab preferably before the sensor is 

deployed for data collection. On the other hand, a data driven method for correction of intensity values 

could be applied to an existing / already collected data from the field. Hence our focus is to estimate the 

parameters for the LiDAR intensity correction using a data driven technique such as mentioned in (55). 

As per the proposed framework the corrected intensity values(𝐼𝑐) could be written as a function of 

observed intensity(𝐼𝑜), range(𝑅), and cosine of angle of incidence (𝛼)as mentioned in Equation 7-1 

below. 

𝐼𝑐 = 𝐼𝑜𝑅𝑎 cosb(𝛼) 

Equation 7-1 

To estimate the parameters in Equation 7-1, we adopt the assumption that a location on the of the truck 

body across several LiDAR scans of truck’s trajectory should have same intensity value irrespective of its 

range and angle of incidence. Such points with their presence in more than one LiDAR scan are 

identified, their corresponding trajectory in successive scans is estimated. To make the parameter 

estimation process more robust, a very close neighboring region (patch) of each point is considered for 

the parameter estimation.  
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7.2.3 Calibration Strips for Intensity Correction 
For simplifying the terminology in further documentation, let us call all the patches of one single point 

across scans as that point’s calibration strip (𝑐𝑠𝑝). So, each 𝑐𝑠𝑝 contains 𝑛𝑐𝑠,𝑝 points with different 

range and angle of incidence. Technically all these points represent same region of truck, hance should 

have same intensity. Let us say we identified a total of 𝑁𝑐𝑠 such calibration strips for a given truck. 

Then the parameter estimation problem could be stated as an optimization (minimization) problem 

which would parallelly reduce the variance of observed intensity values of each calibration strip of given 

truck. This optimization problem can be written as Equation 7-2. 

∑ ∑ (ln(𝐼𝑜,𝑝) + 𝑎𝑙𝑛(𝑅𝑝) + 𝑏𝑙𝑛(cos(𝛼𝑝)))
2

𝑝∈𝑖𝑐𝑠𝑝𝑖𝑐𝑠𝑝∈𝑁𝐶𝑆

 

Equation 7-2 

7.2.4 Stepwise Description of the Parameter Calibration 
As explained in previous chapters each LiDAR scan of truck is a pointcloud object depicting the cartesian 

coordinates of truck geometry in 3D. Range and angle of incidence of each of those points needs to be 

calculated for estimating the Intensity correction parameters. The range of each of the points can be 

estimated directly by estimating the length of their position vector from the LiDAR scanner itself.  

The surface normal of each of the points along with their position vectors is needed to estimate the 

angle of incidence. As discussed in section 3.5.1, the density of the points is not constant for each LiDAR 

scan both in horizontal as well as vertical direction.  

The sparse point density of individual frames affects the ability to estimate accurate surface normal near 

the edges. This limitation was overcome by estimating the surface normals of the dense reconstructed 

truck in translated coordinates using the transformation matrices obtained from section  4.2. Once the 

surface normals estimates were obtained, the body of the truck was segregated by using a hybrid 

sequential Gaussian Mixture Models -based clustering of normals and density-based DBSCAN clustering. 

The surface normals of the segregated body of truck were inverse transformed back to the original 

coordinates for the purpose of angle of incidence estimation. 

Once the surface normals are obtained, the calibration strips of the truck are obtained as described in 

section 7.2.3. An evolutionary algorithm based many objective optimization using pymoo (56) is 

performed on the calibration strips of a truck to estimate the Intensity correction parameters. This 

framework is illustrated in a flowchart in Figure 7.3. 
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Figure 7.3 LiDAR Intensity correction framework 

 

7.3 Preliminary Results of LiDAR Intensity Homogenization 
The proposed framework was applied to a small subset of trucks from section 3.3. Preliminary results 

presented in Figure 7.4  show an improved distinction of fleet identification features. The corrected 

intensity values show a reduction in the variance of intensity values quite well and provides a distinct 

contrast of fleet features against the background. 
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Figure 7.4 Preliminary results of LiDAR Intensity correction 

 

7.4 Future Expansion 
This LiDAR intensity correction framework has the potential to facilitate the characterization of trucks at 

fleet level.  This could fill significant freight data gap and help provide valuable insights to freight policy 

making agencies. 
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Truck 1.a 

Truck 1.b 

Truck 2.a 

Truck 2.b 

Figure 7.5 Potential to fill freight data gaps 

 

Two hypothetical example cases are provided to demonstrate the potential of a LiDAR intensity-based 

truck surface characterization model. Traditionally trucks 1.a and 1.b from Figure 7.5 would have been 

identified as FHWA Class 9 Semi tank truck by existing advanced truck classification methods(38). With 

the development of LiDAR intensity-based surface characterization, a new dimension of industry being 

served could be added. In this example truck 1.a mostly serves cryogenic industry, whereas truck 1.b 

serves the retail distribution centers of gasoline. Similarly for truck 2.a, 2.b we would have been able to 

identify a freight vs non-freight vehicle for the same body configuration with the availability of surface 

characterization model. 
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8. Conclusion 
To fill the truck monitoring gaps on rural highway corridors, this study developed novel LiDAR-based 

truck classification methods through the development of a new truck point cloud reconstruction 

framework that was able to retain a wide LDZ and accurately classify trucks based on the FHWA-CA 

scheme and detailed truck body configurations. The data used for modeling was collected from a 

horizontally oriented multi-array 3D LiDAR sensor, which has the ability to capture a wide field of view of 

the roadway. In this case, even though vehicles traveling in the outermost lanes presented in front of 

the LiDAR sensor for a short period of time and occluded vehicles traveling in the corresponding inner 

lanes, the point cloud originating from those occluded vehicles could be retrieved from consecutive 

frames. The sparse point clouds from individual frames resulting from a low vertical resolution were 

enriched by aggregating multiple frames associated with the same truck. Subsequently, the lower profile 

of the reconstructed vehicle point cloud was extracted and used as inputs for the deep neural network 

to classify vehicles based on the FHWA classification scheme. The classification model with the 

reconstruction framework outperformed the state-of-the-art axle-based classification model using 

LiDAR sensors in terms of both their accuracy and robustness. This LiDAR-based FHWA model achieved a 

79 percent average CCR. Classes 8 and 9 were classified correctly with 84 percent and 99 percent CCR 

even though they share very similar body configurations. 

This study investigated the PointNet deep representation learning algorithm to further classify trucks in 

their detailed body configurations. The PointNet-based model successfully learned the basic 

characteristics of each truck class by selecting the critical features from each preprocessed point cloud. 

Finally, two model ensemble strategies, SMA and BMA, were explored to improve the generality of the 

model and to further enhance the model performance. The LiDAR-based truck body type classification 

model was able to classify heavy-duty trucks in much more detail, with a close relationship to their 

industry affiliations. For example, the new model could accurately distinguish low boy platforms from 

general flatbed trucks, where these two types of platform trucks are designed to carry different types of 

payloads. This model was able to classify 31 different vehicle types (advantageously mainly trucks) and 

achieve an average class CCR of 90 percent for both a truck with trailer (s) and single-unit vehicles. 

Remarkably, the proposed method was able to distinguish 53ft containers and semi-trailer enclosed 

vans with over 95 percent CCR even though they share very similar physical characteristics, which is a 

significant improvement over previous models using the integration of WIM and inductive signature 

data (38), as well as LiDAR (8). 

In the future, more LiDAR data will be collected from other detection sites to test the transferability of 

the proposed model. Furthermore, multi-lane truck classification applications can be explored as the 

horizontal orientation of the LiDAR permits capturing a full 360-degree field of view. 
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	Figure
	Figure
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	Two classification models were developed from this preprocessed dataset: an FHWA axle-based classification model as well as a body configuration-based model. 
	FHWA Axle-based Classification 
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	Four-tire Single Unit 
	Four-tire Single Unit 

	0.70 
	0.70 

	69 
	69 


	Class 4 
	Class 4 
	Class 4 

	None 
	None 

	None 
	None 

	Bus 
	Bus 

	1.00 
	1.00 

	20 
	20 


	Class 51 
	Class 51 
	Class 51 

	0.97 
	0.97 

	934 
	934 

	Two-axle, six-tire, single-unit truck 
	Two-axle, six-tire, single-unit truck 

	0.44 
	0.44 

	17 
	17 


	Class 6 
	Class 6 
	Class 6 

	0.95 
	0.95 

	208 
	208 

	Three-axle, single-unit truck 
	Three-axle, single-unit truck 

	0.00 
	0.00 

	4 
	4 


	Class 7 
	Class 7 
	Class 7 

	0.76 
	0.76 

	17 
	17 

	Four or fewer axle, single-trailer truck 
	Four or fewer axle, single-trailer truck 

	None 
	None 

	None 
	None 


	Class 8 
	Class 8 
	Class 8 

	0.84 
	0.84 

	117 
	117 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 92 
	Class 92 
	Class 92 

	0.99 
	0.99 

	1,746 
	1,746 

	Five-axle, single-trailer truck 
	Five-axle, single-trailer truck 

	1.00 
	1.00 

	17 
	17 


	Class 10 
	Class 10 
	Class 10 

	0.33 
	0.33 

	12 
	12 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 11 
	Class 11 
	Class 11 

	0.85 
	0.85 

	13 
	13 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 12 
	Class 12 
	Class 12 

	0.50 
	0.50 

	2 
	2 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 13 
	Class 13 
	Class 13 

	None 
	None 

	None 
	None 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 14 
	Class 14 
	Class 14 

	1.00 
	1.00 

	31 
	31 

	None 
	None 

	None 
	None 

	None 
	None 


	Average CCR 
	Average CCR 
	Average CCR 

	0.79 
	0.79 

	- 
	- 

	- 
	- 

	0.76 
	0.76 

	- 
	- 




	Note: 1Class 5 used in this study contained a two-axle truck pulling a small trailer which was not included in (9). 2 In the FHWA-CA scheme, Class 9 type 32 was separated from the rest of Class 9 truck and labeled as Class 14. In (9), Class 14 trucks are merged into Class 9 trucks. 
	Compared to the previous model (9), the new classification framework proposed in this study is able to classify vehicles in much more detail with significantly higher accuracy, especially for heavy-duty trucks from Class 8 to Class 14 which have disproportionally adverse impacts on pavement (39) and the environment (40). 
	Truck Body Type Classification 
	Transportation agencies have been increasingly interested in collecting truck body configuration data due to its strong association with industries and freight commodities, to better understand their distinct operational characteristics and impacts on infrastructure and the environment. The body classification model was based on a novel deep neural network architecture called PointNet, which has the ability to directly adopt point clouds as inputs and detect critical features for classification from the raw
	and further enhance model performance.  Model averaging was applied to these five models to yield the final model prediction. Two model averaging methods were explored and in this study Simple Model Averaging (SMA) and Bayesian Model Averaging (BMA). The results from SMA and BMA are presented in Table 2. After applying model averaging across five PointNet models, the number of classes with CCR value less than 80 percent was significantly reduced. The model ensemble outperformed most of the individual models
	Table 2 Results of Body Classification Model 
	  
	  
	  
	  
	  

	Model 1 
	Model 1 

	Model 2 
	Model 2 

	Model 3 
	Model 3 

	Model 4 
	Model 4 

	Model 5 
	Model 5 

	SMA 
	SMA 

	BMA 
	BMA 

	Test Sample 
	Test Sample 



	20ft Container 
	20ft Container 
	20ft Container 
	20ft Container 

	0.98 
	0.98 

	0.98 
	0.98 

	1.00 
	1.00 

	1.00 
	1.00 

	0.93 
	0.93 

	1.00 
	1.00 

	1.00 
	1.00 

	59 
	59 


	40ft Container 
	40ft Container 
	40ft Container 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	0.99 
	0.99 

	0.99 
	0.99 

	196 
	196 


	53ft Container 
	53ft Container 
	53ft Container 

	0.94 
	0.94 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.96 
	0.96 

	0.96 
	0.96 

	170 
	170 


	Auto (Conventional) 
	Auto (Conventional) 
	Auto (Conventional) 

	0.71 
	0.71 

	0.94 
	0.94 

	0.91 
	0.91 

	0.88 
	0.88 

	0.82 
	0.82 

	0.91 
	0.91 

	0.91 
	0.91 

	34 
	34 


	Auto (Pickup) 
	Auto (Pickup) 
	Auto (Pickup) 

	0.90 
	0.90 

	0.95 
	0.95 

	0.79 
	0.79 

	0.90 
	0.90 

	0.74 
	0.74 

	0.89 
	0.89 

	0.89 
	0.89 

	19 
	19 


	Bobtail 
	Bobtail 
	Bobtail 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	109 
	109 


	Cab-over Enclosed Van (SU) 
	Cab-over Enclosed Van (SU) 
	Cab-over Enclosed Van (SU) 

	0.95 
	0.95 

	0.98 
	0.98 

	0.98 
	0.98 

	0.99 
	0.99 

	0.97 
	0.97 

	0.99 
	0.99 

	1.00 
	1.00 

	148 
	148 


	Concrete 
	Concrete 
	Concrete 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	16 
	16 


	Conventional Enclosed Van (SU) 
	Conventional Enclosed Van (SU) 
	Conventional Enclosed Van (SU) 

	0.97 
	0.97 

	0.96 
	0.96 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	362 
	362 


	Drop Frame Van (Semi) 
	Drop Frame Van (Semi) 
	Drop Frame Van (Semi) 

	0.82 
	0.82 

	0.82 
	0.82 

	0.79 
	0.79 

	0.82 
	0.82 

	0.86 
	0.86 

	0.82 
	0.82 

	0.79 
	0.79 

	28 
	28 


	Dry Bulk Transport 
	Dry Bulk Transport 
	Dry Bulk Transport 

	1.00 
	1.00 

	1.00 
	1.00 

	0.94 
	0.94 

	0.94 
	0.94 

	0.94 
	0.94 

	1.00 
	1.00 

	1.00 
	1.00 

	16 
	16 


	Enclosed Van (Multi) 
	Enclosed Van (Multi) 
	Enclosed Van (Multi) 

	0.80 
	0.80 

	0.80 
	0.80 

	1.00 
	1.00 

	0.80 
	0.80 

	0.80 
	0.80 

	0.80 
	0.80 

	0.80 
	0.80 

	5 
	5 


	Enclosed Van (Semi) 
	Enclosed Van (Semi) 
	Enclosed Van (Semi) 

	0.99 
	0.99 

	0.98 
	0.98 

	0.99 
	0.99 

	0.98 
	0.98 

	0.99 
	0.99 

	0.98 
	0.98 

	0.99 
	0.99 

	928 
	928 


	End Dump (SU) 
	End Dump (SU) 
	End Dump (SU) 

	0.81 
	0.81 

	0.89 
	0.89 

	0.92 
	0.92 

	0.89 
	0.89 

	0.89 
	0.89 

	0.88 
	0.88 

	0.88 
	0.88 

	26 
	26 


	End Dump (Semi) 
	End Dump (Semi) 
	End Dump (Semi) 

	0.83 
	0.83 

	1.00 
	1.00 

	0.96 
	0.96 

	0.91 
	0.91 

	0.87 
	0.87 

	0.96 
	0.96 

	0.96 
	0.96 

	23 
	23 


	End Dump wTrailer 
	End Dump wTrailer 
	End Dump wTrailer 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	7 
	7 


	Low Boy Platform 
	Low Boy Platform 
	Low Boy Platform 

	0.82 
	0.82 

	0.84 
	0.84 

	0.89 
	0.89 

	0.82 
	0.82 

	0.93 
	0.93 

	0.91 
	0.91 

	0.91 
	0.91 

	56 
	56 


	Low Loading 
	Low Loading 
	Low Loading 

	0.86 
	0.86 

	0.91 
	0.91 

	0.88 
	0.88 

	0.90 
	0.90 

	0.90 
	0.90 

	0.90 
	0.90 

	0.89 
	0.89 

	116 
	116 


	Open Top Van 
	Open Top Van 
	Open Top Van 

	0.00 
	0.00 

	0.25 
	0.25 

	0.25 
	0.25 

	0.00 
	0.00 

	0.75 
	0.75 

	0.25 
	0.25 

	0.00 
	0.00 

	4 
	4 


	Passenger Vehicle 
	Passenger Vehicle 
	Passenger Vehicle 

	0.83 
	0.83 

	0.83 
	0.83 

	0.87 
	0.87 

	0.73 
	0.73 

	0.77 
	0.77 

	0.80 
	0.80 

	0.80 
	0.80 

	30 
	30 


	Pickup-Utility-Service 
	Pickup-Utility-Service 
	Pickup-Utility-Service 

	0.81 
	0.81 

	0.71 
	0.71 

	0.76 
	0.76 

	0.73 
	0.73 

	0.79 
	0.79 

	0.79 
	0.79 

	0.79 
	0.79 

	94 
	94 


	Pickup-Utility-Service wTrailer 
	Pickup-Utility-Service wTrailer 
	Pickup-Utility-Service wTrailer 

	0.79 
	0.79 

	0.67 
	0.67 

	0.88 
	0.88 

	0.75 
	0.75 

	0.71 
	0.71 

	0.88 
	0.88 

	0.83 
	0.83 

	24 
	24 


	Plaform wTrailer 
	Plaform wTrailer 
	Plaform wTrailer 

	0.80 
	0.80 

	0.77 
	0.77 

	0.80 
	0.80 

	0.80 
	0.80 

	0.83 
	0.83 

	0.83 
	0.83 

	0.83 
	0.83 

	30 
	30 


	Platform (SU) 
	Platform (SU) 
	Platform (SU) 

	0.87 
	0.87 

	0.86 
	0.86 

	0.90 
	0.90 

	0.86 
	0.86 

	0.84 
	0.84 

	0.90 
	0.90 

	0.89 
	0.89 

	135 
	135 


	Platform (Semi) 
	Platform (Semi) 
	Platform (Semi) 

	0.91 
	0.91 

	0.93 
	0.93 

	0.93 
	0.93 

	0.91 
	0.91 

	0.91 
	0.91 

	0.94 
	0.94 

	0.94 
	0.94 

	160 
	160 


	Stake Body (SU) 
	Stake Body (SU) 
	Stake Body (SU) 

	0.81 
	0.81 

	0.88 
	0.88 

	0.87 
	0.87 

	0.90 
	0.90 

	0.83 
	0.83 

	0.89 
	0.89 

	0.89 
	0.89 

	114 
	114 


	Tank (Multi) 
	Tank (Multi) 
	Tank (Multi) 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	5 
	5 


	 Tank (SU) 
	 Tank (SU) 
	 Tank (SU) 

	0.64 
	0.64 

	0.55 
	0.55 

	0.73 
	0.73 

	0.55 
	0.55 

	0.64 
	0.64 

	0.73 
	0.73 

	0.64 
	0.64 

	11 
	11 


	Tank (Semi) 
	Tank (Semi) 
	Tank (Semi) 

	0.94 
	0.94 

	1.00 
	1.00 

	0.99 
	0.99 

	0.96 
	0.96 

	0.99 
	0.99 

	0.99 
	0.99 

	0.99 
	0.99 

	83 
	83 


	 Tank Tank 
	 Tank Tank 
	 Tank Tank 

	1.00 
	1.00 

	0.96 
	0.96 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	27 
	27 


	Others 
	Others 
	Others 

	0.29 
	0.29 

	0.37 
	0.37 

	0.45 
	0.45 

	0.47 
	0.47 

	0.22 
	0.22 

	0.37 
	0.37 

	0.18 
	0.18 

	49 
	49 


	Accuracy 
	Accuracy 
	Accuracy 

	0.92 
	0.92 

	0.93 
	0.93 

	0.94 
	0.94 

	0.93 
	0.93 

	0.93 
	0.93 

	0.94 
	0.94 

	0.94 
	0.94 

	3,084 
	3,084 


	Avg CCR 
	Avg CCR 
	Avg CCR 

	0.84 
	0.84 

	0.86 
	0.86 

	0.88 
	0.88 

	0.85 
	0.85 

	0.87 
	0.87 

	0.88 
	0.88 

	0.86 
	0.86 

	3,084 
	3,084 




	Note: SU: Single-Unit Truck; Semi: Tractors pulling Semi-Trailer; Multi: Tractors pulling multiple trailers. Cells labeled with red colors represent CCR lower than 0.80. Green colors highlight the benefits of using the SMA model. 
	LiDAR intensity-based Truck Surface Characterization 
	Aside from their physical attributes, fleet identification features such as logos found on many trucks can be used to infer their industry affiliation and can serve as another dimension of truck characterization to provide further insights into their activity patterns.  Fittingly, along with the depth and geometry information, LiDAR sensors also provide an additional attribute widely named as ‘intensity’(I). LiDAR intensity is the measured power (returned) of a reflected laser beam from a target surface. Th
	variables. A significant advantage of LiDAR intensity over conventional images is its independence of ambient lighting, which allows it to be effective in poor lighting conditions, such as twilight and night times.  This capability makes LiDAR a candidate technology for capturing truck fleet attributes. 
	This study focused on estimating the parameters for the LiDAR intensity correction using a data driven technique such as mentioned in (55). As per the proposed framework the corrected intensity values(𝐼𝑐) could be written as a function of observed intensity(𝐼𝑜), range(𝑅), and cosine of angle of incidence (𝛼)as shown below. 𝐼𝑐=𝐼𝑜𝑅𝑎cosb(𝛼) 
	Each LiDAR scan of truck is a pointcloud object depicting the cartesian coordinates of truck geometry in 3D. Range and angle of incidence of each of those points needs to be calculated for estimating the Intensity correction parameters. The range of each of the points can be estimated directly by estimating the length of their position vector from the LiDAR scanner itself.  
	Preliminary results presented in Figure 4 show an improved distinction of fleet identification features. The corrected intensity values show a reduction in the variance of intensity values quite well and provides a distinct contrast of fleet features against the background. 
	 
	Figure
	Figure 4. Preliminary results of LiDAR intensity correction 
	 
	Conclusion 
	To fill the truck monitoring gaps on rural highway corridors, this study developed two novel LiDAR-based truck classification methods through the development of a new truck point cloud reconstruction framework that was able to retain a wide LDZ and accurately classify trucks based on the FHWA-CA scheme and detailed truck body configurations. The data used for modeling was collected from a horizontally oriented multi-array 3D LiDAR sensor, which has the ability to capture a wide field of view of the roadway.
	The sparse point clouds from individual frames resulting from a low vertical resolution were enriched by aggregating multiple frames associated with the same truck.  
	The axle-based classification model with the reconstruction framework outperformed the state-of-the-art axle-based classification model using LiDAR sensors both in terms of accuracy and robustness. This LiDAR-based FHWA model achieved a 79 percent average CCR. Classes 8 and 9 were classified correctly with 84 percent and 99 percent CCR even though they share very similar body configurations. 
	This study investigated the PointNet deep representation learning algorithm to further classify trucks in their detailed body configurations. The LiDAR-based truck body type classification model was able to classify heavy-duty trucks in much more detail, with a close relationship to their industry affiliations. This model was able to classify 31 different vehicle types (advantageously mainly trucks) and achieve an average class CCR of 90 percent for both a truck with trailer (s) and single-unit vehicles. Re
	  
	1. Introduction 
	Heavy trucks comprise a much larger proportion of overall traffic in rural highways compared with their urban counterparts, hence detailed classification counts are needed to adequately assess the impacts of truck activity in these regions.  The traffic monitoring guide recommends that at least 30 percent of traffic data collection sites provide classification data.  However, piezo-based sensors, which are the predominant technology for collecting truck classification data are costly to maintain.  Furthermo
	Under current practice, truck count data obtained along non-detectorized rural highway corridors are either estimated using unreliable growth factors applied on decades-old observed data or collected via pneumatic tubes which need to be laid across highways to collect traffic data.  The former approach is inaccurate and tends to underestimate the actual traffic growth in California.  The latter approach exposes field personnel to significant safety hazards and is strongly discouraged unless lane closures ar
	The rapid advancement of Light Detection and Ranging (LiDAR) technology in recent years provides further opportunities for non-pavement intrusive alternatives to collect detailed vehicle classification data. In this study, a new truck classification method is developed using a LiDAR sensor array in a horizontal orientation, utilizing a reconstruction procedure that combines frames of sparse point clouds to generate a dense point cloud representation of vehicle objects to facilitate accurate truck classifica
	  
	2. Literature Review 
	LiDAR technology was initially investigated for vehicle classification applications in the early 2000s when scanning laser sensors were available for the domain of traffic surveillance. Such sensors scan the cross-section of the roadway by taking several range measurements and generate gray-level intensity images for each vehicle passing through the scanning area. Abdelbaki et al used two laser scanners with a 10-degree separation to classify vehicles based on their aggregated bodies (1). In their study, hi
	Lee and Coifman adopted side-fire LiDAR for vehicle classification (4) where they designed a prototype data collection system consisting of a roadside probe vehicle equipped with two vertically oriented laser scanners. Both sensors scan the vertical planar of the road section simultaneously to construct a 3D LiDAR image by merging successive 2D frames (5). After obtaining the 3D point cloud for the surveillance area, the vehicle objects were extracted from the background using a well-established background 
	In recent years, multi-array rotating 3D LiDAR sensors have grown in popularity due to the sensing needs of autonomous vehicles. Nezafat et al mounted such a sensor on a roadside pole with a vertical orientation (7), as illustrated in 
	In recent years, multi-array rotating 3D LiDAR sensors have grown in popularity due to the sensing needs of autonomous vehicles. Nezafat et al mounted such a sensor on a roadside pole with a vertical orientation (7), as illustrated in 
	Figure 2.1
	Figure 2.1

	b. 

	Figure 2.1 Illustration of LiDAR Orientation 
	 
	Figure
	When a truck enters the LiDAR detection zone, each scan of the sensor can capture a 3D profile of one slide of the truck body within the scanning area. However, the vertical orientation of the sensor constrained the detection zone to a 40-degree horizontal of view (
	When a truck enters the LiDAR detection zone, each scan of the sensor can capture a 3D profile of one slide of the truck body within the scanning area. However, the vertical orientation of the sensor constrained the detection zone to a 40-degree horizontal of view (
	Figure 2.2
	Figure 2.2

	). 

	Figure 2.2 Truck Point Cloud Collection from Vertically Oriented LiDAR 
	 
	Figure
	Therefore, they had to merge all the frames associated with the same vehicle to generate the full profile of a truck. Then, they projected the 3D profiles of trucks to 2D images and adopted a pre-trained convolution neural network model to extract low-level features from the images. Such an image-based method was able to distinguish only 4 types of trucks with a similar configuration, yielding over 95% accuracy. However, the 3D information from the point cloud was not well-utilized in their research, which 
	horizontally oriented LiDAR sensor, which provided a 360-degree view of the ambient environment, for vehicle classification (9). Unfortunately, the sparse point cloud representation retrieved from the horizontally oriented LiDAR gave insufficient information for detailed truck classification. Therefore, they were only able to distinguish three different types of trucks (
	horizontally oriented LiDAR sensor, which provided a 360-degree view of the ambient environment, for vehicle classification (9). Unfortunately, the sparse point cloud representation retrieved from the horizontally oriented LiDAR gave insufficient information for detailed truck classification. Therefore, they were only able to distinguish three different types of trucks (
	Table 2.1
	Table 2.1

	). The evolution of LiDAR-based vehicle classification is listed in 
	Table 2.1
	Table 2.1

	. 

	Table 2.1 Summary of LiDAR-based Vehicle Classification 
	Year 
	Year 
	Year 
	Year 
	Year 

	Literature 
	Literature 

	LiDAR Type 
	LiDAR Type 

	Setup 
	Setup 

	Methods Type 
	Methods Type 

	Classification Method 
	Classification Method 

	Correct Classification Rate 
	Correct Classification Rate 



	2000 
	2000 
	2000 
	2000 

	Abdelbaki et al., (2001) 
	Abdelbaki et al., (2001) 

	Laser scanner 
	Laser scanner 

	Overhead mounted, two lasers 
	Overhead mounted, two lasers 

	High-level Hand-designed features from Intensity Image 
	High-level Hand-designed features from Intensity Image 

	Rule-based Lookup table 
	Rule-based Lookup table 

	Motorcycle: 66.6%  
	Motorcycle: 66.6%  
	Passenger vehicle: 87.2%;  
	Pickup/Van/Sport Utility: 90.3%; 
	Misc. Truck/Bus/RV: 84.7%;  
	Tractor Trailer: 100.0% 


	2005 
	2005 
	2005 

	Hussain & Moussa, (2005) 
	Hussain & Moussa, (2005) 

	Laser scanner 
	Laser scanner 

	Overhead mounted, two lasers 
	Overhead mounted, two lasers 

	High-level Hand-designed features from Intensity Image 
	High-level Hand-designed features from Intensity Image 

	Classic machine learning (random neural network) 
	Classic machine learning (random neural network) 

	Motorcycle: 60.0%;   
	Motorcycle: 60.0%;   
	Passenger vehicle: 90.0%;  
	Pickup/van: 94.4;  
	Single unit truck or bus: 85.0%;  
	Tractor Trailer: 100.0% 


	2013 
	2013 
	2013 

	Sandhawalia et al., (2013) 
	Sandhawalia et al., (2013) 

	Laser scanner 
	Laser scanner 

	Overhead mounted, each sensor per lane 
	Overhead mounted, each sensor per lane 

	High-level hand-designed features from raw profile feature, fisher image signatures, side projection profiles 
	High-level hand-designed features from raw profile feature, fisher image signatures, side projection profiles 

	Classic machine learning 
	Classic machine learning 

	Passenger vehicle: 99.8%;  
	Passenger vehicle: 99.8%;  
	Passenger vehicle with one trailer: 89.8%;  
	truck: 81.4%;  
	truck with one trailer: 89.7%;  
	truck with two trailers: 68.8%;  
	motorcycle: 68.7% 


	2012 
	2012 
	2012 

	Lee & Coifman, (2012) 
	Lee & Coifman, (2012) 

	Laser scanner 
	Laser scanner 

	Side-fire, vertically orientation, two lidars 
	Side-fire, vertically orientation, two lidars 

	High-level hand-designed feature from raw points 
	High-level hand-designed feature from raw points 

	Classic machine learning 
	Classic machine learning 

	Motorcycle:91.2%;  
	Motorcycle:91.2%;  
	Passenger vehicle: 99.9;  
	Passenger vehicle pulling trailer: 94.1%;  
	Single unit truck: 94.5%; 
	Single trailer: 68.9%;  
	Multiunit truck: 98.6% 


	2019 
	2019 
	2019 

	Asborno et al., (2019) 
	Asborno et al., (2019) 

	Single beam 
	Single beam 

	Side-fire, horizontal orientation 
	Side-fire, horizontal orientation 

	Combination of High-level hand-designed feature and low-level feature from LiDAR signature 
	Combination of High-level hand-designed feature and low-level feature from LiDAR signature 

	2D LiDAR signature pattern 
	2D LiDAR signature pattern 
	Classic machine learning (Bayesian combined predictor) 

	Van and container: 94%;  
	Van and container: 94%;  
	Platform type: 63%;  
	Low-profile trailer: 44%;  
	Tank: 33%;  
	Hopper and end dump: 30% 


	2019 
	2019 
	2019 

	Wu et al., (2019) 
	Wu et al., (2019) 

	Multi-array rotating 3D LiDAR 
	Multi-array rotating 3D LiDAR 

	Side-fire, horizontal orientation 
	Side-fire, horizontal orientation 

	Hand-designed features from raw points 
	Hand-designed features from raw points 

	Max height, the nearest distance to lidar, number of points in the frame, the difference between length and height, object profiles 
	Max height, the nearest distance to lidar, number of points in the frame, the difference between length and height, object profiles 
	Classic machine learning  

	Bus: 100%;  
	Bus: 100%;  
	Five-axle, single-trailer truck: 94.1%;  
	Bicycle; motorcycle: 5.9%; 
	Three-axle, single-unit truck: 0%; 
	Passenger car; four-tire, single unit; two-axle, six-tire, single-unit truck: 93.2%;  
	Pedestrians and skateboarder:100% 


	2019 
	2019 
	2019 

	Vatani Nezafat et al., (2019) 
	Vatani Nezafat et al., (2019) 

	Multi-array rotating 3D LiDAR 
	Multi-array rotating 3D LiDAR 

	Side-fire, vertical orientation 
	Side-fire, vertical orientation 

	Low-level feature from 2D images 
	Low-level feature from 2D images 

	Transfer Learning (AlexNet, VggNet and ResNet 
	Transfer Learning (AlexNet, VggNet and ResNet 

	Container: 98.4%;   
	Container: 98.4%;   
	Ref Container:  90.1%;  
	Ref Enclosed Van: 95.7%;  
	Enclosed Van: 97.6% 


	2020 
	2020 
	2020 

	Sahin et al., (2020) 
	Sahin et al., (2020) 

	Multi-array rotating 3D LiDAR 
	Multi-array rotating 3D LiDAR 

	Side-fire, vertical orientation 
	Side-fire, vertical orientation 

	Hand-designed features from vowelized point cloud 
	Hand-designed features from vowelized point cloud 

	 
	 
	Classic machine learning  

	20ft Container: 96.3%;  
	20ft Container: 96.3%;  
	40ft Container: 97.7%;  
	40ft reefer container:94%;  
	Dry Van: 94.3%;  
	Reefer dry Van:  91.0%;  
	platform: 94.9%;  
	Tank: 97.1%;  
	Auto transport: 91.1;  
	open top and dump: 85.1;  
	other: 62.5 




	While the side-fire orientation provides advantages in installation setup, it exposes the challenge of capturing detailed dense point clouds. While a vertically oriented LiDAR sensor has the ability to capture dense point cloud over successive frames, its narrow horizontal field of view requires the assumption of constant vehicle speeds. On the other hand, horizontally oriented LiDAR possesses a wider horizontal field of view, but each resulting point cloud is sparse and limits the accuracy of the resulting
	 
	 
	  
	3. Data Description and Preprocessing 
	3.1 Study Site Layout 
	The data used in this study were collected from the entrance ramp to the San Onofre truck scale from the Southbound I-5 Freeway in Southern California (as shown in 
	The data used in this study were collected from the entrance ramp to the San Onofre truck scale from the Southbound I-5 Freeway in Southern California (as shown in 
	Figure 3.1
	Figure 3.1

	). The LiDAR sensor was placed in horizontal orientation above a traffic cabinet. The z-axis of the LiDAR sensor is aligned perpendicular to the truck flow direction. The yellow sector shown in 
	Figure 3.1
	Figure 3.1

	 illustrates the approximated LiDAR Detection Zone (LDZ). Data under free flow and congested conditions were observed at the study site and included in the model development.  

	 
	Figure
	Figure 3.1 Layout of the Detection Site 
	 
	3.2 Data Collection Setup 
	A video camera, an advanced loop detector card and a Velodyne VLP-32c LiDAR unit were installed at the study site as shown in 
	A video camera, an advanced loop detector card and a Velodyne VLP-32c LiDAR unit were installed at the study site as shown in 
	Figure 3.2
	Figure 3.2

	. The lateral distance between the LiDAR sensor and the centerline of the adjacent traffic lane was approximately 6 meters. All three sensors were connected to a solid-state field processing unit. The video camera and loop detector were used to establish data groundtruth. The Velodyne VLP-32c sensor has 32 infra-red lasers paired with infra-red detectors mounted on a motorized rotating platform to provide distance measurement between the sensor and objects (10).  

	The LiDAR was configured to scan the surroundings at a frequency of 10 rotations per second with a 180-degree LDZ – each rotation generating a single 3D point cloud frame. The LiDAR sensor was horizontally mounted on a platform attached to the roadside pole of an existing traffic control cabinet.  
	 
	Figure
	Figure 3.2 System Setup 
	 
	The LiDAR sensor was mounted 2.05 meters above the ground plane and the top laser channel elevation angle was 15 degrees (
	The LiDAR sensor was mounted 2.05 meters above the ground plane and the top laser channel elevation angle was 15 degrees (
	Figure 3.2
	Figure 3.2

	), which allowed the sensor to capture both the top and side view of passing vehicles. As shown in 
	Figure 3.2
	Figure 3.2

	, z-axis is perpendicular to the direction of the traffic and the laser array rotates about the z-axis. 

	 
	Figure
	Figure 3.3 Illustration of the LiDAR Sensor 
	 
	A sample of raw point cloud data frame showing a vehicle entering the truck scale within the LDZ is presented in 
	A sample of raw point cloud data frame showing a vehicle entering the truck scale within the LDZ is presented in 
	Figure 3.4
	Figure 3.4

	. 

	 
	Figure
	Figure 3.4 The Raw Point Cloud of the Detection Region 
	 
	3.3 Data Description 
	The video data from the camera, inductive loop signature data from the loop detector, and point cloud data from the LiDAR sensor, were collected simultaneously. Several data collection efforts were made between July 18th, 2019 and August 5th, 2019, yielding a point cloud dataset comprising 10,024 processed vehicles and representing 30 distinct truck categories defined in this study (including a class labeled as “Other” which represented trucks not belonging to any of the classes shown in 
	The video data from the camera, inductive loop signature data from the loop detector, and point cloud data from the LiDAR sensor, were collected simultaneously. Several data collection efforts were made between July 18th, 2019 and August 5th, 2019, yielding a point cloud dataset comprising 10,024 processed vehicles and representing 30 distinct truck categories defined in this study (including a class labeled as “Other” which represented trucks not belonging to any of the classes shown in 
	Figure 3.5
	Figure 3.5

	) as well as passenger vehicles (
	Figure 3.5
	Figure 3.5

	). 70 percent of the data were used for training and 30 percent were reserved for model testing.  

	 
	Figure
	Figure 3.5 Illustration of Vehicle Body Configuration used in the study (Note: SU: Single Unit Trucks, Semi: Tractors pulling Semi-Trailer, Multi: Tractors pulling Multiple Trailers.) 
	 
	3.4 Semi-automatic Data Labeling Method 
	Data labeling is a critical but typically labor-intensive process in vehicle classification modeling research. Conventionally, the data labeling process requires a significant effort to visually determine the class label of each detected vehicle through images from the video camera, and subsequently manually 
	record the corresponding vehicle characteristics. In this study, a semi-automatic data labeling strategy was developed and implemented to improve the efficiency of the data labeling process and further enrich the training dataset. The semi-automatic data labeling method utilized inductive loop signature classification predictions as a preliminary data labeling mechanism to establish the dataset used to train the LiDAR-based classification model. Note, inductive loop sensors are not required for the LiDAR-ba
	The overall semi-automatic data labeling process is illustrated in 
	The overall semi-automatic data labeling process is illustrated in 
	Figure 3.6
	Figure 3.6

	. First, vehicle records from all three data sources (inductive loop, video and LiDAR) were synchronized and aligned. When a vehicle enters the inductive loop sensor’s detection zone, a timestamp is generated with its inductive signature. Next the corresponding images from the video camera are cropped based on the synchronized timestamp. Then, a time window with a range of ± 0.1 seconds around the time instance that the vehicle hit the loop sensor is created. The vehicle point cloud object which contains fr
	Figure 3.6
	Figure 3.6

	) with the support of the existing technology (Sensor 1 in 
	Figure 3.6
	Figure 3.6

	). 

	 
	Figure
	Figure 3.6 Semi-automatic Data Labeling Framework 
	 
	3.5 Data Preprocessing 
	3.5.1 Background Subtraction and Object Detection 
	A large set of points in the raw point cloud was associated with static objects, e.g., ground, buildings. These background points were required to be subtracted from the raw point cloud to reduce the data processing time and improve the accuracy of the proposed classification method. 
	A point cloud background subtraction method was developed based on spatial occupancy. The algorithm started with aggregating the point cloud data over an initiation period 𝑡. The points originating from each of the 32 laser channels of the LiDAR were distributed on a conical surface, with the LiDAR unit being the apex. The elevation angles of the channels are listed below: 
	 
	Table 3.1 Laser Channel Angles 
	ID 
	ID 
	ID 
	ID 
	ID 

	Elevation Angles (deg) 
	Elevation Angles (deg) 

	ID 
	ID 

	Elevation Angles (deg) 
	Elevation Angles (deg) 



	0 
	0 
	0 
	0 

	15 
	15 

	16 
	16 

	-1.667 
	-1.667 


	1 
	1 
	1 

	10.3333 
	10.3333 

	17 
	17 

	-2 
	-2 


	2 
	2 
	2 

	7 
	7 

	18 
	18 

	-2.333 
	-2.333 


	3 
	3 
	3 

	4.667 
	4.667 

	19 
	19 

	-2.667 
	-2.667 


	4 
	4 
	4 

	3.333 
	3.333 

	20 
	20 

	-3 
	-3 


	5 
	5 
	5 

	2.333 
	2.333 

	21 
	21 

	-3.333 
	-3.333 


	6 
	6 
	6 

	1.667 
	1.667 

	22 
	22 

	-3.667 
	-3.667 


	7 
	7 
	7 

	1.333 
	1.333 

	23 
	23 

	-4 
	-4 


	8 
	8 
	8 

	1 
	1 

	24 
	24 

	-4.667 
	-4.667 


	9 
	9 
	9 

	0.667 
	0.667 

	25 
	25 

	-5.333 
	-5.333 


	10 
	10 
	10 

	0.333 
	0.333 

	26 
	26 

	-6.148 
	-6.148 


	11 
	11 
	11 

	0 
	0 

	27 
	27 

	-7.254 
	-7.254 


	12 
	12 
	12 

	-0.333 
	-0.333 

	28 
	28 

	-8.843 
	-8.843 


	13 
	13 
	13 

	-0.667 
	-0.667 

	29 
	29 

	-11.31 
	-11.31 


	14 
	14 
	14 

	-1 
	-1 

	30 
	30 

	-15.639 
	-15.639 


	15 
	15 
	15 

	-1.333 
	-1.333 

	31 
	31 

	-25 
	-25 




	 
	The cumulative number of points within each cell on the conical surface was subsequently counted, defined by a horizontal angular resolution 𝜃, the channel number 𝐼, and the radical distance resolution 𝑟. The cells that were occupied by the background objects were deemed to have more points, which was identified using a threshold ℎ. These background cells were used as a mask to filter out background points in other frames. The initiation period 𝑡 should be long enough to accumulate enough points in the 
	angular resolution of 0.2°. 𝜃 should be larger than 0.2° so that at least one point falls into each cell at each frame. 
	The threshold h should be tuned based on all other parameters. The following parameters were used in this study: 𝑡=60𝑠𝑒𝑐, 𝜃=1°,𝑟=0.1𝑚,ℎ=10. The background subtraction result of frame 126,010 on July 19, 2019, is illustrated in 
	The threshold h should be tuned based on all other parameters. The following parameters were used in this study: 𝑡=60𝑠𝑒𝑐, 𝜃=1°,𝑟=0.1𝑚,ℎ=10. The background subtraction result of frame 126,010 on July 19, 2019, is illustrated in 
	Figure 3.7
	Figure 3.7

	, where red represents background and blue represents foreground.  

	 
	Figure
	Figure 3.7 Distinguishing foreground vehicle objects (blue) from the background (blue) to facilitate background subtraction 
	 
	To effectively identify individual vehicles, the foreground points were partitioned based on their similarity.  Density-based spatial clustering of applications with noise (DBSCAN) is a popular clustering algorithm that generally works well in existing point cloud studies (12). The algorithm groups points based on their proximity. It also marks isolated points as outliers, which makes the algorithm less sensitive to background points that were not removed from the previous step. The algorithm takes two para
	• minPoints: the minimum number of points to form a cluster. Its value should be close to the point cloud size of a typical vehicle in the dataset. 
	• minPoints: the minimum number of points to form a cluster. Its value should be close to the point cloud size of a typical vehicle in the dataset. 
	• minPoints: the minimum number of points to form a cluster. Its value should be close to the point cloud size of a typical vehicle in the dataset. 

	• eps: the searching radius to form a cluster. If eps is too small, a large proportion of the points will not be clustered; whereas for a large eps, most of the points will be allocated to the same cluster.  
	• eps: the searching radius to form a cluster. If eps is too small, a large proportion of the points will not be clustered; whereas for a large eps, most of the points will be allocated to the same cluster.  


	Tuning DBSCAN parameters is a sophisticated process. In addition to the heuristic (12) offered by the authors of the DBSCAN, researchers have proposed many different approaches (12, 13) to determine the optimal parameters. To find optimal parameters and to conduct sensitivity analysis for DBSCAN are beyond the scope of our research. Instead, we estimate these parameters following engineering heuristics. We acknowledge that the resulted parameters are sub-optimal but are adequate for the vehicle classificati
	For the test dataset, 𝑒𝑝𝑠 should be slightly smaller than jam density spacing such that two adjacent stopped vehicles are not clustered as the same vehicle. However, if 𝑒𝑝𝑠 is too large, the truck’s cabin could be identified as a separate object from the trailer. We chose 𝑒𝑝𝑠 to be 1.5 meters. The physical meaning of eps is the maximum distance between two points to be considered as one cluster. It is chosen to be slightly smaller than the jam density such that even in completely stopped traffic, t
	adjacent vehicles are not grouped into one cluster. For this reason, it does not need to be tuned under different traffic conditions. The other parameter 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 is estimated based on the size of a typical truck. The value is chosen such that a typical semi-truck can be detected when it is on the off-ramp (measured from the tip of the offramp divider), which is around 60 meters from the sensor. Below is the process to estimate the number of points captured by LiDAR when the distance between the t
	adjacent vehicles are not grouped into one cluster. For this reason, it does not need to be tuned under different traffic conditions. The other parameter 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 is estimated based on the size of a typical truck. The value is chosen such that a typical semi-truck can be detected when it is on the off-ramp (measured from the tip of the offramp divider), which is around 60 meters from the sensor. Below is the process to estimate the number of points captured by LiDAR when the distance between the t
	Figure 3.8
	Figure 3.8

	 with a side view and top-down view,  

	where, 
	𝑤- width of the truck 
	ℎ- height of the truck 
	𝜙1- angle of elevation from the LiDAR to the truck 
	𝜙2- angle of depression from the LiDAR to the truck 
	𝜃- beam width of the truck viewed by the LiDAR 
	𝑙- mounting height of the LiDAR 
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	Figure 3.8 Detection Illustration 
	 
	From the top-down view, 
	𝑎=𝜌𝜃≈𝜌𝑤𝑑(1) 
	 
	Where,  
	 𝜌- azimuth resolution of the sensor, represented as the number of points within a unit angle. 
	𝛼- number of points per laser channel. 
	From the side view, 𝜙1=arctan(ℎ−𝑙𝑑)(2) 𝜙2=arctan(𝑙𝑑)(3) 
	For the VLP-32c LiDAR with a 10Hz sampling rate, 𝜌=10 points per degree. The mounting height of the LiDAR 𝑙=2.05𝑚. The size limit of trucks defined by the California Department of Transportation (Caltrans)1 is used for the calculation, where 𝑤=2.59𝑚 (8.5 𝑓𝑒𝑒𝑡), ℎ=4.26𝑚 (14 𝑓𝑒𝑒𝑡). Then, 𝜙1=2.11°, 𝜙2=1.96°. Based on 𝜙1,𝜙2, and the elevation angles of the laser channels in 
	For the VLP-32c LiDAR with a 10Hz sampling rate, 𝜌=10 points per degree. The mounting height of the LiDAR 𝑙=2.05𝑚. The size limit of trucks defined by the California Department of Transportation (Caltrans)1 is used for the calculation, where 𝑤=2.59𝑚 (8.5 𝑓𝑒𝑒𝑡), ℎ=4.26𝑚 (14 𝑓𝑒𝑒𝑡). Then, 𝜙1=2.11°, 𝜙2=1.96°. Based on 𝜙1,𝜙2, and the elevation angles of the laser channels in 
	Table 3.1
	Table 3.1

	, the number of laser channels that cover the truck, 𝛽=10. The total number of points captured by the Lidar from the truck’s front face at distance 𝑑=60𝑚 is thus, 𝑁=𝛼⋅𝛽≈𝛽𝜌𝑤𝑑=247(4) 

	1 https://dot.ca.gov/programs/traffic-operations/legal-truck-access/restrict-process 
	1 https://dot.ca.gov/programs/traffic-operations/legal-truck-access/restrict-process 

	To accommodate trucks that are slightly smaller than the typical size. We choose 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 to be 200, which is slightly smaller than 𝑁. 
	The object detection result of frame 126,010 on July 19, 2019, is illustrated in 
	The object detection result of frame 126,010 on July 19, 2019, is illustrated in 
	Figure 3.9
	Figure 3.9

	. The outliers are represented by blue points, while objects are represented in other distinct colors. 

	 
	Figure
	Figure 3.9 Object Detection Result (Blue: outliers; Green: vehicle 1; Yellow: vehicle 2) 
	 
	3.5.2 Data Association  
	The same vehicle object presents in multiple consecutive LiDAR frames. The vehicle object in each LiDAR frame needs to be labeled with the same vehicle ID. This research utilized the Simple Online and Realtime Tracking (SORT) algorithm to associate the vehicle point cloud from each LiDAR frame to its corresponding vehicle object efficiently (14). First, each vehicle point cloud was represented by the centroid of the minimum oriented 2D bounding box which was obtained from its ground projection. Next, the in
	4. Vehicle Point Cloud Registration Framework 
	4.1 Introduction to Point-set Registration 
	Point-set registration is an essential component that is widely used in the field of robotics and computer vision. It is the process of estimating the spatial transformation (e.g., translation, rotation, and scaling) that aligns two sets of points from the same object with a sensor that captures them from different views. Given two corresponding point sets 𝑃={𝒑𝟏,𝒑𝟐,𝒑𝟑,…,𝒑𝒎} and 𝑄={𝒒𝟏,𝒒𝟐,𝒒𝟑,…,𝒒𝒏} in ℝ𝑑(𝑑 represents the dimension of each point. In this study, 𝑑 = 3), the goal of registrat
	The 3D rotation about 𝑥, 𝑦, 𝑧 axis (𝑹𝑥,𝑹𝑦,𝑹𝑧) and translation matrix T is shown below: 
	𝑹𝑥=[10000𝑐𝑜𝑠𝜃𝑥−𝑠𝑖𝑛𝜃𝑥00𝑠𝑖𝑛𝜃𝑥𝑐𝑜𝑠𝜃𝑥00001],𝑹𝑦=[𝑐𝑜𝑠𝜃𝑦0𝑠𝑖𝑛𝜃𝑦00100−𝑠𝑖𝑛𝜃𝑦0𝑐𝑜𝑠𝜃𝑦00001],𝑹𝑧=[𝑐𝑜𝑠𝜃𝑧−𝑠𝑖𝑛𝜃𝑧00𝑠𝑖𝑛𝜃𝑧𝑐𝑜𝑠𝜃𝑧0000100001],𝑻=[100010001𝑡𝑥𝑡𝑦𝑡𝑧0001](6) 
	The most classic method used for solving point set registration problems is called the iterative closest point (ICP) algorithm (17). The ICP algorithm starts with the initial transformation matrix 𝑻𝟎=(𝑹𝟎,𝒕𝟎) and then selects a set of 𝑘 corresponding points pairs (𝒑𝒊,𝒒𝒊) between point sets 𝑃 and 𝑄. The distance between 𝑃 and 𝑄 can be written as: 𝑑𝑖𝑠𝑡(𝑻𝑃𝑄(𝑃),𝑄)(7) 
	𝑻𝑃𝑄(𝑃) represents rotating and translating 𝑃 with a transformation matrix 𝑻𝑃𝑄. 𝑑𝑖𝑠𝑡() denotes the distance between point sets. In the literature, there are two common ways to define the distance between point sets: Point-to-Point (17) and Point-to-Plane distance (18).  
	1. Point-to-Point Distance Evaluation (17) 
	Assuming there are N corresponding point pairs (𝒑𝒊,𝒒𝒊), 𝑖=1…𝑁, the registration problem using point-to-point distance measurement can be formulated as:   𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄 1𝑁∑‖𝑻𝑃𝑄𝒑𝒊−𝒒𝒊‖2𝑁𝑖=1,𝑠.𝑡   𝑅𝑇𝑅=𝐼(8) 
	 
	2. Point-to-Plane Distance Evaluation (18). 
	When Point-to-Plane distances are used as the error metric, the objective function can be formulated as the sum of the square error between 𝒑𝒊 and the tangent plane at 𝒒𝒊. The norm of the tangent plane at 𝒒𝒊 is denoted as 𝒏𝒐𝒓𝒊. The objective function is shown below:   𝑎𝑟𝑔𝑚𝑖𝑛𝑻𝑃𝑄 1𝑁∑‖(𝑻𝑃𝑄𝒑𝒊−𝒒𝒊)·𝒏𝒐𝒓𝒊‖2𝑁𝑖=1,𝑠.𝑡   𝑅𝑇𝑅=𝐼(9) 
	The next step of the ICP algorithm is to iteratively find the optimal 𝑻𝑃𝑄 which minimizes the distance between 𝑃 and 𝑄. Due to the simplicity of the original algorithm, hundreds of ICP-based variants have been proposed over the past two decades; a comprehensive review of ICP-based methods has been documented in (19).   
	 
	4.2 Probabilistic Point-set Registration 
	However, the performance of ICP-based approaches suffers from the noisiness, outliers, and occlusions of point clouds that commonly occur in a real-world dataset, especially for data collected in outdoor 
	environments (20)(21). Many researchers have investigated probabilistic approaches to improve the robustness of point-set registration. The most popular probabilistic-based registration algorithm is called Coherent Point Drift (CPD) proposed by Myronenko and Song, which treats registration as a probability density estimation problem (21). Instead of using the closest distance to define the corresponding point pairs, CPD assigned a probability value to the correspondence according to the proximity between po
	 
	4.3 Vehicle Point Cloud Registration Framework 
	Most of the previous research on point-set registration targeted aligning point sets obtained from mobile sensors, where the LiDAR unit is mounted on the top of a moving robot (19) which allows the sensor to actively capture the object point clouds. As a consequence, every point cloud density associated with the same object is relatively uniform across LiDAR frames. However, for traffic surveillance applications, LiDAR sensors are generally mounted on a static pole standing by the roadside to passively moni
	4.3.1 Eliminate Redundant Frames  
	When a truck is entering or leaving the LDZ (
	When a truck is entering or leaving the LDZ (
	Figure 4.1
	Figure 4.1

	), the position of the truck is far from the LiDAR sensing unit which results in a sparse truck point cloud (
	Figure 4.2
	Figure 4.2

	).  

	 
	Figure
	Figure 4.1 Samples of Truck Frames 
	 
	Those frames generally descript the driving unit and the rear edge of the truck as shown in 
	Those frames generally descript the driving unit and the rear edge of the truck as shown in 
	Figure 4.2
	Figure 4.2

	. 

	 
	Figure
	Figure 4.2 Samples of Redundant Frames 
	 
	Such information is captured in the frames associated with the truck when its position is closer to the sensor (
	Such information is captured in the frames associated with the truck when its position is closer to the sensor (
	Figure 4.2
	Figure 4.2

	). Thus, the sparse point clouds which are captured far from the sensor and have limited contribution to the registration process are eliminated to save the computation time. 

	 
	Figure
	Figure 4.3 Samples of Frames used for Registration 
	 
	Figure 4.4
	Figure 4.4
	Figure 4.4

	a presents the point counts profile while the truck is traversing the LDZ. Each point in the profile records the total number of points that the truck contained in its corresponding frame. Frame 22,138 and Frame 22,139 contain the highest number of points across all frames during its travel in the LDZ where the highest point count is denoted as 𝑝𝑛𝑚𝑎𝑥. The point count profile is subsequently normalized based on 𝑝𝑛𝑚𝑎𝑥 (
	Figure 4.4
	Figure 4.4

	b). Finally, the truck point cloud which contains point counts less than 20 percent of 𝑝𝑛𝑚𝑎𝑥 were treated as redundant frames and eliminated. 

	 
	Figure
	Figure 4.4 Elimination of Redundant Frames 
	 
	4.3.2 Statistical Outlier Removal and Voxel Down Sampling  
	After the background subtraction step is performed, there would still be some noise and outlier data points which are statistically detectable. Therefore, an outlier removal process is needed prior to vehicle point cloud registration. Two procedures are included in this step: statistical outlier removal and voxel downsampling. These are suggested by a popular 3D data processing library—Open3D (26). The statistical outlier removal method takes the 50 nearest neighbors of a given point in the point cloud and 
	4.3.3 Vehicle Point Cloud Registration 
	After the redundant frames and statistical outliers were removed, a pairwise registration with a coarse-to-fine strategy was applied on each pair of adjacent frames. The pairwise alignment was accomplished through the use of the FilterReg method (25). First, a coarse registration was initially conducted, where all point clouds were coarsely downsampled with relatively larger voxel size vs_coarse = 1.5 meters and then each pair of point clouds was aligned based on the point-to-point distances metric. Transfo
	Third, in order to reduce the cumulative errors which could be potentially caused by the sequential pairwise registration, the transformation matrices were further optimized using the multiway registration which describes the process of merging multiple frames of an object in a global space. In this 
	study, multiway registration was implemented through the use of a pose graph optimization technique proposed in (27). The multiway registration process is illustrated as follows. First, the information matrices which represent the inverse correlation matrix between two consecutive transformation matrices were estimated. Second, a pose graph is defined with the transformation matrices ( 𝑻𝑗−1,𝑗𝑔𝑟𝑜𝑢𝑛𝑑) as the node and information matrices (𝐴𝑛−1)  as the edges in the graph, where each edge of the pos
	study, multiway registration was implemented through the use of a pose graph optimization technique proposed in (27). The multiway registration process is illustrated as follows. First, the information matrices which represent the inverse correlation matrix between two consecutive transformation matrices were estimated. Second, a pose graph is defined with the transformation matrices ( 𝑻𝑗−1,𝑗𝑔𝑟𝑜𝑢𝑛𝑑) as the node and information matrices (𝐴𝑛−1)  as the edges in the graph, where each edge of the pos
	Figure 4.5
	Figure 4.5

	. 

	 
	Figure
	Figure 4.5 Vehicle Point Cloud Registration Framework 
	 
	When the vehicle is approaching the LiDAR sensor, most of the information is captured from the tractor unit. The distinctive details as well as the level of the sparseness of the point cloud on the truck tractor make the process of finding corresponding points between two point clouds easier. Hence, minimizing the point-to-point distance is capable of aligning the source (Yellow in 
	When the vehicle is approaching the LiDAR sensor, most of the information is captured from the tractor unit. The distinctive details as well as the level of the sparseness of the point cloud on the truck tractor make the process of finding corresponding points between two point clouds easier. Hence, minimizing the point-to-point distance is capable of aligning the source (Yellow in 
	Figure 4.6
	Figure 4.6

	) to the target point cloud (Blue in 
	Figure 4.6
	Figure 4.6

	)  firmly. 
	Figure 4.6
	Figure 4.6

	a presents the point clouds from two consecutive frames. 
	Figure 4.6
	Figure 4.6

	b is the result of the coarse registration with point-to-point distance. 

	 
	Figure
	Figure 4.6 Examples of Pairwise Registration (Blue: target point cloud, Yellow: Source point cloud) 
	 
	On the contrary, while the truck is just passed the LiDAR sensor, points are densely distributed on the side view of the truck. Such point clouds contained a limited number of prominent features to align them by just minimizing the point-to-point distance. 
	On the contrary, while the truck is just passed the LiDAR sensor, points are densely distributed on the side view of the truck. Such point clouds contained a limited number of prominent features to align them by just minimizing the point-to-point distance. 
	Figure 4.6
	Figure 4.6

	c shows the failure case after coarse registration using the point-to-point distance. However, the dense point distribution on the truck sides creates well-defined planes which allow the fine registration with a point-to-plane strategy to successfully further tighten two point clouds (
	Figure 4.6
	Figure 4.6

	d). 

	 
	4.3.4 Registration Framework Comparison 
	The main purpose of the vehicle registration process is to enrich the information of the vehicle point clouds through merging multiple frames and to precisely portray the vehicle characteristics such that vehicles can be classified in detail. Therefore, if the reconstructed vehicle contains essential features which can be used to visually identify its vehicle class without any significant misalignment, it will be considered as a well-registered vehicle point cloud. Otherwise, it will be considered as a poor
	Where 𝑁𝑤𝑟 represents the number of well-registered vehicle point clouds and 𝑁𝑏𝑟 is the number of the poor-registered point clouds. The new framework has been compared with the previous registration framework through VPCRP value. The previous registration framework (28) presents a VPCRP value of 0.168, where the new registration framework has a VPCRP value of 0.024. The registration performance has been significantly improved by adopting the new framework proposed in this study (
	Where 𝑁𝑤𝑟 represents the number of well-registered vehicle point clouds and 𝑁𝑏𝑟 is the number of the poor-registered point clouds. The new framework has been compared with the previous registration framework through VPCRP value. The previous registration framework (28) presents a VPCRP value of 0.168, where the new registration framework has a VPCRP value of 0.024. The registration performance has been significantly improved by adopting the new framework proposed in this study (
	Table 4.1
	Table 4.1

	). 

	 
	Table 4.1 Registration Results Comparison 
	FHWA-CA Classes 
	FHWA-CA Classes 
	FHWA-CA Classes 
	FHWA-CA Classes 
	FHWA-CA Classes 

	Previous Registration Framework (28) 
	Previous Registration Framework (28) 

	The New Registration Framework 
	The New Registration Framework 



	Class 8 
	Class 8 
	Class 8 
	Class 8 

	 
	 
	Figure

	 
	 
	Figure


	Class 9 
	Class 9 
	Class 9 
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	Class 10 
	Class 10 
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	Class 11 
	Class 11 
	Class 11 
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	Class 12 
	Class 12 
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	Class 14 
	Class 14 
	Class 14 

	 
	 
	Figure

	 
	 
	Figure




	 
	4.3.5 Registration Performance with Missing Frames 
	The data used in this study was collected from the single-lane off-ramp area. Therefore, the occluded vehicle point clouds were rarely observed at this data collection site. To test the robustness of the new registration framework, random frames for a truck object were dropped to simulate the missing frames scenario caused by vehicle occlusions. 
	The data used in this study was collected from the single-lane off-ramp area. Therefore, the occluded vehicle point clouds were rarely observed at this data collection site. To test the robustness of the new registration framework, random frames for a truck object were dropped to simulate the missing frames scenario caused by vehicle occlusions. 
	Figure 4.7
	Figure 4.7

	 demonstrates the experiment of the missing frame test.  

	 
	Figure
	Figure 4.7 Illustration of Experiment Design 
	 
	The duration that each vehicle traversing the LDZ was divided into three equal time slots denoted by Section 1, Section 2, and Section 3. Since vehicle occlusions generally happen on consecutive frames. 𝑚 random consecutive frames were dropped from each section at each time. 
	The duration that each vehicle traversing the LDZ was divided into three equal time slots denoted by Section 1, Section 2, and Section 3. Since vehicle occlusions generally happen on consecutive frames. 𝑚 random consecutive frames were dropped from each section at each time. 
	Table 4.2
	Table 4.2

	 presents the results of the experiment. 

	Table 4.2 Experiment Results 
	Number of Consecutive Frames 
	Number of Consecutive Frames 
	Number of Consecutive Frames 
	Number of Consecutive Frames 
	Number of Consecutive Frames 

	 
	 
	Section 1: Approaching the LiDAR Sensor 

	 
	 
	Section 2: In front of the LiDAR Sensor 

	 
	 
	Section 3: Leaving the LiDAR Sensor 



	0 
	0 
	0 
	0 
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	Figure


	 
	 
	 
	 
	6 

	 
	 
	Figure
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	7 
	7 
	7 

	Completely miss aligned 
	Completely miss aligned 

	Completely miss aligned 
	Completely miss aligned 

	Completely miss aligned 
	Completely miss aligned 




	When 5 consecutive frames are dropped, meaning that 0.5 seconds of data are missing, from either Section 1 or Section 2, the reconstructed point cloud is still able to preserve the essential information that can be used to identify their FHWA classes. For Section 3, the reconstruction framework fails when the 4 consecutive frames were dropped. The random 5 consecutive frames dropped from Section 3 were the last 5 frames used for the vehicle reconstruction. Therefore, nearly a quarter of the points on the re
	This experiment demonstrated that the proposed framework is capable of reconstructing vehicle objects with 3-5 consecutive missing frames. A comprehensive vehicle occlusion analysis will be explored after real-world occlusion data are collected. 
	 
	5. FHWA Axle-based Classification 
	The lower profile of a truck contained information related to its axle and general body configuration which defines their FHWA-CA classes. Compared to each frame of a truck object, the lower profile of the reconstructed truck point cloud is well-defined (
	The lower profile of a truck contained information related to its axle and general body configuration which defines their FHWA-CA classes. Compared to each frame of a truck object, the lower profile of the reconstructed truck point cloud is well-defined (
	Figure 5.1
	Figure 5.1

	).  

	 
	Figure
	Figure
	Figure 5.1 A truck object represented by a sparse point cloud from a single frame (Left) vs. a dense point cloud representation reconstructed from multiple frames (Right). 
	 
	Therefore, in this section, essential features from the lower profile of the reconstructed truck point cloud were extracted and used as inputs for the vehicle classification model. Next, a deep ensembled neural network model was developed to assign vehicle point clouds to their corresponding FHWA-CA classes. 
	 
	5.1 Feature Extraction 
	Statistical outliers on the reconstructed vehicle point cloud were further removed prior to the feature extraction (26). Subsequently, the pose of the vehicle point clouds was adjusted to align them with the 𝑧𝑦 plane using transformation matrix 𝑇𝑚𝑖𝑑−1,𝑚𝑖𝑑 since the middle frame was used as the reference frame in the pose graph optimization. Then, the 3D point cloud was projected to 𝑧𝑦 plane to obtain its 2D representation of each vehicle. The feature extraction process is shown 
	Statistical outliers on the reconstructed vehicle point cloud were further removed prior to the feature extraction (26). Subsequently, the pose of the vehicle point clouds was adjusted to align them with the 𝑧𝑦 plane using transformation matrix 𝑇𝑚𝑖𝑑−1,𝑚𝑖𝑑 since the middle frame was used as the reference frame in the pose graph optimization. Then, the 3D point cloud was projected to 𝑧𝑦 plane to obtain its 2D representation of each vehicle. The feature extraction process is shown 
	Figure 5.2
	Figure 5.2

	.  

	 
	Figure
	Figure 5.2 Feature Extraction 
	 
	First, a rolling window with a size of 0.1 was created, where the minimum 𝑧 value within the window was calculated. The size of the rolling window should be less than the radius of a regular wheel of a truck. The minimum 𝑧 value rolling window captures the raw lower profile of each vehicle point cloud. Second, in order to obtain a better representation of the lower profile, the raw profile was smoothed using Hann window (29) which is formulated as:  𝑤(𝑖)=0.5−0.5cos(2𝜋𝑖𝑀−1)   0≤𝑖≤𝑀−1(12) 
	 Where 𝑖 represents the index of each point in the profile. M is the window size of the filter. 
	The smoothed lower profile of the truck point cloud presents both the axle and general body configuration of the truck. Third, the smoothed lower profiles were interpolated using cubic spline interpolation, and then 200 equally spaced z values were extracted from the interpolated profile to align the dimension of the training instances. Finally, the interpolated profile was normalized between the limits of -1 to 1. 
	 
	Figure
	Figure 5.3 Illustration of Features 
	 
	As 
	As 
	Figure 5.3
	Figure 5.3

	 shows, the valley in box 1 indicated the steering axle of the truck. Valleys in box 2 represent the drive axles of the tractor and the valleys in box 3 correspond the spread axles of the trailer. The peak shown in box 2 presents the connector between the tractor and trailer unit.  

	 
	5.2 Bootstrap Aggregating Deep Neural Network for Vehicle Classification 
	Neural Network models have been proven to be able to approximate any complex non-linear mapping functions (30). Compared to a shallow neural network, the multi-layer structure of a deep neural network model allows it to accomplish the same task with exponentially lower computation complexity (31). Therefore, this study developed a deep neural network (DNN) with dropout regularization (32) to assign each vehicle point cloud to its corresponding FHWA-CA classes. The DNN model comprised 5 hidden layers with 51
	Neural Network models have been proven to be able to approximate any complex non-linear mapping functions (30). Compared to a shallow neural network, the multi-layer structure of a deep neural network model allows it to accomplish the same task with exponentially lower computation complexity (31). Therefore, this study developed a deep neural network (DNN) with dropout regularization (32) to assign each vehicle point cloud to its corresponding FHWA-CA classes. The DNN model comprised 5 hidden layers with 51
	Figure 5.4
	Figure 5.4

	 traces the model performance histories during the training and testing process. After 100 epochs, the overall accuracy on the training set keeps gradually increasing while the testing accuracy converges to 0.95. Hence the model training converged after 100 epochs. 

	 
	Figure
	Figure 5.4 Learning Curve 
	 
	In order to reduce the variability of the DNN prediction results, a bootstrap aggregating (bagging) (36) ensemble approach was applied. In this study, the bagging ensemble method resamples the training set with stratified bootstrap resampling strategy (37) to ten sets of bootstrapped training samples which were used to build ten different DNN models with the same model structure. The final prediction results were determined by the highest averaged prediction score of the ten DNN models. 
	5.3 Model Results 
	This section first presents the test results of the proposed model using a normalized confusion matrix and then provides the error analysis on the misclassified vehicles. In addition, the proposed model was compared with the state-of-the-art FHWA axle-based classification model using a LiDAR sensor. 
	5.3.1 Classification Results and Analysis 
	The normalized confusion matrix of the classification model is presented in 
	The normalized confusion matrix of the classification model is presented in 
	Figure 5.5
	Figure 5.5

	.  

	 
	Figure
	Figure
	Figure 5.5 Normalized Confusion Matrix for the Test Set 
	 
	Each row of the red-colored confusion matrix is normalized by a total number of groundtruth vehicles in their corresponding classes. Therefore, the diagonal elements represent the recall values of each class, which was also referred to as “Correct Classification Rate” (CCR) in some literature (8, 38). Each column of the green-colored confusion matrix is normalized according to the total number of predicted values for each class. Hence, the diagonal elements are the precision values of each class. 
	Based on the normalized confusion matrices, the proposed model is able to correctly classify Classes 5, 6, 8, 11, and 14 with over 80 percent CCR. However, the model is weak in predicting Class 10 and Class 12. Interestingly, the precision value in Class 10 is higher than the recall value.  This implies that the implementation of the model is expected to yield very few predictions on Class 10, but most of them are expected to be correctly classified. This is quite ideal for the model implementation. Convers
	The boxplot in 
	The boxplot in 
	Figure 5.6
	Figure 5.6

	 shows the model recall distribution of the DNN models which are built with 10 sets of bootstrapped training instances. The bar plot represents the training sample size for each class. 

	 
	Figure
	Figure 5.6 CCR Distribution across All Classes 
	 
	As 
	As 
	Figure 5.6
	Figure 5.6

	 shows, the variability of the prediction results increases as the training sample size reduces, especially for Classes 10 and 12. Insufficient training samples were used to learn the key features from Classes 10 and 12 trucks which result in high variances in their prediction outcomes. In addition, Classes 2 and 3, passenger vehicles, are rarely observed at the entrance of the truck scale and those vehicles have larger diversity in terms of their body shape. Therefore, the model prediction variance is also

	With sufficient training samples, the proposed classification model is capable of accurately distinguishing Classes 8 and 9 with overlapping body configuration (
	With sufficient training samples, the proposed classification model is capable of accurately distinguishing Classes 8 and 9 with overlapping body configuration (
	Figure 5.7
	Figure 5.7

	a and b). However, classes with minor differences in their axle configuration but with the same body type are hard to distinguish when the training instances are not adequate (
	Figure 5.7
	Figure 5.7

	c, d, e, and f). Consequently, in order to further enhance the model performance on Classes 10 and 12, the training dataset needs to be enriched in future studies. 

	 
	Figure
	Figure 5.7 Overlapping Body Configurations 
	 
	5.3.2 Model Comparison 
	Table 5.1
	Table 5.1
	Table 5.1

	 provides a comparison between the model developed in this study with the state-of-the-art LiDAR-based classification model which used the single frame of an object to classify vehicles on the basis of the FHWA scheme (9). 

	Table 5.1 Comparison between developed model (Bagging DNN) vs state of the art (Random Forest) 
	FHWA-CA 
	FHWA-CA 
	FHWA-CA 
	FHWA-CA 
	FHWA-CA 

	CCR  
	CCR  
	(Bagging DNN) 

	Testing Samples 
	Testing Samples 

	Classes defined in (9) 
	Classes defined in (9) 

	CCR (Random  
	CCR (Random  
	Forest) (9) 

	Testing Samples (9) 
	Testing Samples (9) 



	Class 2 
	Class 2 
	Class 2 
	Class 2 

	0.75 
	0.75 

	20 
	20 

	Passenger Vehicle 
	Passenger Vehicle 

	0.84 
	0.84 

	150 
	150 


	TR
	Class 3 
	Class 3 

	Four-tire Single Unit 
	Four-tire Single Unit 

	0.70 
	0.70 

	69 
	69 


	Class 4 
	Class 4 
	Class 4 

	None 
	None 

	None 
	None 

	Bus 
	Bus 

	1.00 
	1.00 

	20 
	20 


	Class 51 
	Class 51 
	Class 51 

	0.97 
	0.97 

	934 
	934 

	Two-axle, six-tire, single-unit truck 
	Two-axle, six-tire, single-unit truck 

	0.44 
	0.44 

	17 
	17 


	Class 6 
	Class 6 
	Class 6 

	0.95 
	0.95 

	208 
	208 

	Three-axle, single-unit truck 
	Three-axle, single-unit truck 

	0.00 
	0.00 

	4 
	4 


	Class 7 
	Class 7 
	Class 7 

	0.76 
	0.76 

	17 
	17 

	Four or fewer axle, single-trailer truck 
	Four or fewer axle, single-trailer truck 

	None 
	None 

	None 
	None 


	Class 8 
	Class 8 
	Class 8 

	0.84 
	0.84 

	117 
	117 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 92 
	Class 92 
	Class 92 

	0.99 
	0.99 

	1,746 
	1,746 

	Five-axle, single-trailer truck 
	Five-axle, single-trailer truck 

	1.00 
	1.00 

	17 
	17 


	Class 10 
	Class 10 
	Class 10 

	0.33 
	0.33 

	12 
	12 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 11 
	Class 11 
	Class 11 

	0.85 
	0.85 

	13 
	13 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 12 
	Class 12 
	Class 12 

	0.50 
	0.50 

	2 
	2 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 13 
	Class 13 
	Class 13 

	None 
	None 

	None 
	None 

	None 
	None 

	None 
	None 

	None 
	None 


	Class 14 
	Class 14 
	Class 14 

	1.00 
	1.00 

	31 
	31 

	None 
	None 

	None 
	None 

	None 
	None 


	Average CCR 
	Average CCR 
	Average CCR 

	0.79 
	0.79 

	- 
	- 

	- 
	- 

	0.76 
	0.76 

	- 
	- 




	Note: 1Class 5 used in this study contained a two-axle truck pulling a small trailer which was not included in (9). 2 In the FHWA-CA scheme, Class 9 type 32 was separated from the rest of Class 9 truck and labeled as Class 14. In (9), Class 14 trucks are merged into Class 9 trucks. 
	Compared to the previous model (9), the new classification framework proposed in this study is able to classify vehicles in much more detail with significantly higher accuracy, especially for heavy-duty trucks from Class 8 to Class 14 which have disproportionally adverse impacts on pavement (39) and the environment (40). 
	 
	6. Truck Body Type Classification  
	Transportation agencies have been increasingly interested in collecting truck body configuration data due to its strong association with industries and freight commodities, to better understand their distinct operational characteristics and impacts on infrastructure and the environment. In this section, this section explored the use of a novel deep neural network architecture - PointNet - to classify truck based on their body configurations. 
	6.1 PointNet-based Truck Classification Model 
	6.1.1 The Deep Representation Learning Algorithm: PointNet 
	The reconstructed 3D point cloud is an irregular type of geometric data structure, where each point is represented by its cartesian coordinates (𝑥,𝑦,𝑧). A conventional convolution neural network requires a regular data format such as image pixels and 3D voxels as inputs. Therefore, the point cloud cannot be directly fed into a typical convolutional architecture. Point clouds are generally transformed to other data types for classification purposes. In the literature, transportation researchers usually ex
	as inputs of classic machine learning algorithms. However, such data transformations and aggregations can introduce quantization error and further conceal the natural invariances of the point cloud data (41), which affects the accuracy and the variety of types of trucks that can be classified. In order to accommodate the characteristics of the point cloud data structure for improving truck classification accuracy, a novel deep neural network architecture—PointNet (41)—was adopted in this research. This neur
	as inputs of classic machine learning algorithms. However, such data transformations and aggregations can introduce quantization error and further conceal the natural invariances of the point cloud data (41), which affects the accuracy and the variety of types of trucks that can be classified. In order to accommodate the characteristics of the point cloud data structure for improving truck classification accuracy, a novel deep neural network architecture—PointNet (41)—was adopted in this research. This neur
	Figure 6.1
	Figure 6.1

	. 

	 
	Figure
	Figure 6.1 PointNet Architecture (41) 
	 
	PointNet primally benefits from two components of its architecture: the shared multi-layer perceptron (MLP) and the max-pooling function. The shared MLP was constructed using 1D convolution with a kernel size of 1, which provides a dense connection across points with the shared parameters (weight and bias terms). This means that the spatial encoding of each point can be learned by the shared MLP. A max-pooling layer was applied as a symmetric function to gather information from all the points, in order to r
	The max-pooling function extracted the global critical feature of each truck point cloud and the overall model structure was able to learn the skeleton of each object. Since the truck body types are generally invariant and distinct in shape, PointNet ideally fits the task of truck body classification. 
	6.1.2 PointNet for Truck Classification Model 
	In this study, the PointNet architecture was adopted to classify truck body types in detail. Prior to the training process, the reconstructed point cloud needed to be regularized. First, the variable number of data points in reconstructed point clouds was uniformly downsampled to a common number of points as inputs into the PointNet. The downsampling process contained three steps. First, a regular voxel grid with a resolution of 5 percent was generated for each reconstructed truck point cloud, where those p
	cloud 𝑘 can be written as a 3D point set, 𝑝𝑘={(𝑥𝑗𝑘,𝑦𝑗𝑘,𝑧𝑗𝑘)|𝑗=1,…,𝑛} ,where n = 1024 in this study. After the downsampling process, the centroid of the truck point cloud 𝑘 was moved to the (0,0,0) point in the coordinate and was represented as 𝑝𝑘𝑐={(𝑥𝑗𝑘𝑐,𝑦𝑗𝑘𝑐,𝑧𝑗𝑘𝑐)|𝑗=1,…,𝑛}. The operation along the x axis is presented in Equation 14, where y and z follow the same calculation. 𝑥𝑗𝑘𝑐=𝑥𝑗𝑘−𝑚𝑎𝑥{𝑥𝑗𝑘}−𝑚𝑖𝑛{𝑥𝑗𝑘}2(14) 
	Then, the truck point cloud 𝑘 was normalized to a unit sphere and denoted by 𝑝𝑘𝑐𝑛={(𝑥𝑗𝑘𝑐𝑠,𝑦𝑗𝑘𝑐𝑠,𝑧𝑗𝑘𝑐𝑠)|𝑗=1,…,𝑛}. The operation along the x-axis is presented in Equation 15, where y and z follow the same calculation. 𝑥𝑗𝑘𝑐𝑠=𝑥𝑗𝑘𝑐𝑚𝑎𝑥{𝑥𝑗𝑘𝑐}(15) 
	The point cloud preparation step is shown in 
	The point cloud preparation step is shown in 
	Figure 6.2
	Figure 6.2

	. Here, a reconstructed point cloud of an auto transport with a conventional tractor is taken as an example. 

	 
	Figure
	Figure 6.2 Point Cloud Preprocessing 
	 
	During the model training process, two data augmentation methods were applied (41). First, each training instance was randomly rotated along the z-axis. Second, each point of the truck point cloud was jittered with a Gaussian noise which followed a 𝑁(0,0.02) distribution to increase the diversity of the training instances. 
	The truck classification model was trained on 5,360 reconstructed truck point clouds with an RTX 2080 super GPU and took approximately 3 hours to converge. The learning process of the truck classification model is presented in the learning curve (
	The truck classification model was trained on 5,360 reconstructed truck point clouds with an RTX 2080 super GPU and took approximately 3 hours to converge. The learning process of the truck classification model is presented in the learning curve (
	Figure 6.3
	Figure 6.3

	). The model accuracy on both training and test dataset improve in a similar trend until 100 epochs. After this point, the model performance gradually plateaus on the test dataset but continues improving on the training dataset. The model converged after 250 epochs. 

	 
	Figure
	Figure 6.3 Learning Curves 
	 
	6.2 Model Averaging 
	A multiple layer structure with nonlinear activation functions on each layer provides deep neural networks with the ability to approximate any complex mapping function (42). However, deep neural network models generally suffer from high variance issues, where model performance varies significantly by dataset (43).  Hence, model averaging strategies were explored to reduce the model variance and further enhance the model performance. The simplest way to apply model averaging on deep neural networks is to tra
	6.2.1 Simple Model Averaging (SMA) 
	Let 𝑚𝑎={𝑚1,𝑚2,...,𝑚𝑛} denote n PointNet models trained with various initial values. 𝑐𝑏 denotes the class labels. 𝑝(𝑐𝑏|𝑚𝑎) represents the probability that model 𝑚𝑎 predicted class 𝑐𝑏. The equation of SMA is shown below. 𝑐^=𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑏∈𝐶∑𝑝(𝑐𝑏|𝑚𝑎)𝑛𝑎=1(16) 
	SMA assumes that 𝑚𝑎 produced an equal contribution to the final decision and gave the prediction results by averaging all the votes of the candidate models. 
	6.2.2 Bayesian Model Averaging (BMA) 
	Unlike simple model averaging, which treats candidate models 𝑚𝑎 equally, Bayesian model averaging assign a prior probability, presenting the subjective credibility of the model predicting a certain class. The posterior probability derived from the candidate models was used as the final prediction score (44, 45). In the case of a class 𝑐 to be predicted based on training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 using 𝑛 PointNets with initial value drawn from a normal distribution, the Bayesian model averaging provides final
	𝑐^=𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑏∈𝐶∑𝑝(𝑐𝑏|𝑚𝑎)𝑝(𝑚𝑎|𝐷𝑡𝑟𝑎𝑖𝑛)𝑁𝑎=1(18)As Equation 18 presents, the averaged model assigns higher weights to the candidate model which performs better for the specific class. The final prediction relies on the weighted average of the prediction scores. 
	 
	6.3 Model Results 
	Five PointNet models were trained with different initial values. 
	Five PointNet models were trained with different initial values. 
	Figure 6.4
	Figure 6.4

	 shows the CCR of each class from five different models.  

	 
	Figure
	Figure 6.4 Prediction Variance Analysis 
	 
	The same model structure yielded high variance to predict certain classes. For instance, model 4 obtained a CCR of 0 percent on predicting open-top vans, where model 5 was able to achieve a CCR of 75 percent on predicting the same class. Conversely, model 4 provided a CCR of 90 percent for single-unit stake body trucks. But the CCR for model 5 on predicting the same class was only 83 percent. 
	The same model structure yielded high variance to predict certain classes. For instance, model 4 obtained a CCR of 0 percent on predicting open-top vans, where model 5 was able to achieve a CCR of 75 percent on predicting the same class. Conversely, model 4 provided a CCR of 90 percent for single-unit stake body trucks. But the CCR for model 5 on predicting the same class was only 83 percent. 
	Figure 6.4
	Figure 6.4

	 thus reveals the need for an ensemble model. Auto (Conventional) and Auto (pickup) distinguish the tractor units of auto transport trucks. “Pickup-Utility-Service wTrailer” and “Platform wTrailer” are used to identify a straight driving unit pulling a small trailer. “End Dump wTrailer” considers an end dump truck pulling either a small trailer or another large dump trailer. “Other” represents all the truck types that do not fit the definition of the previous 30 classes. “Tank Tank” represents a tank tracto
	Table 6.1
	Table 6.1

	. 

	Table 6.1 Results of Body Classification Model 
	  
	  
	  
	  
	  

	Model 1 
	Model 1 

	Model 2 
	Model 2 

	Model 3 
	Model 3 

	Model 4 
	Model 4 

	Model 5 
	Model 5 

	SMA 
	SMA 

	BMA 
	BMA 

	Test Sample 
	Test Sample 



	20ft Container 
	20ft Container 
	20ft Container 
	20ft Container 

	0.98 
	0.98 

	0.98 
	0.98 

	1.00 
	1.00 

	1.00 
	1.00 

	0.93 
	0.93 

	1.00 
	1.00 

	1.00 
	1.00 

	59 
	59 


	40ft Container 
	40ft Container 
	40ft Container 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	0.99 
	0.99 

	0.99 
	0.99 

	196 
	196 


	53ft Container 
	53ft Container 
	53ft Container 

	0.94 
	0.94 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.96 
	0.96 

	0.96 
	0.96 

	170 
	170 


	Auto (Conventional) 
	Auto (Conventional) 
	Auto (Conventional) 

	0.71 
	0.71 

	0.94 
	0.94 

	0.91 
	0.91 

	0.88 
	0.88 

	0.82 
	0.82 

	0.91 
	0.91 

	0.91 
	0.91 

	34 
	34 


	Auto (Pickup) 
	Auto (Pickup) 
	Auto (Pickup) 

	0.90 
	0.90 

	0.95 
	0.95 

	0.79 
	0.79 

	0.90 
	0.90 

	0.74 
	0.74 

	0.89 
	0.89 

	0.89 
	0.89 

	19 
	19 


	Bobtail 
	Bobtail 
	Bobtail 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	109 
	109 


	Cab-over Enclosed Van (SU) 
	Cab-over Enclosed Van (SU) 
	Cab-over Enclosed Van (SU) 

	0.95 
	0.95 

	0.98 
	0.98 

	0.98 
	0.98 

	0.99 
	0.99 

	0.97 
	0.97 

	0.99 
	0.99 

	1.00 
	1.00 

	148 
	148 


	Concrete 
	Concrete 
	Concrete 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	16 
	16 


	Conventional Enclosed Van (SU) 
	Conventional Enclosed Van (SU) 
	Conventional Enclosed Van (SU) 

	0.97 
	0.97 

	0.96 
	0.96 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	0.97 
	0.97 

	362 
	362 


	Drop Frame Van (Semi) 
	Drop Frame Van (Semi) 
	Drop Frame Van (Semi) 

	0.82 
	0.82 

	0.82 
	0.82 

	0.79 
	0.79 

	0.82 
	0.82 

	0.86 
	0.86 

	0.82 
	0.82 

	0.79 
	0.79 

	28 
	28 


	Dry Bulk Transport 
	Dry Bulk Transport 
	Dry Bulk Transport 

	1.00 
	1.00 

	1.00 
	1.00 

	0.94 
	0.94 

	0.94 
	0.94 

	0.94 
	0.94 

	1.00 
	1.00 

	1.00 
	1.00 

	16 
	16 


	Enclosed Van (Multi) 
	Enclosed Van (Multi) 
	Enclosed Van (Multi) 

	0.80 
	0.80 

	0.80 
	0.80 

	1.00 
	1.00 

	0.80 
	0.80 

	0.80 
	0.80 

	0.80 
	0.80 

	0.80 
	0.80 

	5 
	5 


	Enclosed Van (Semi) 
	Enclosed Van (Semi) 
	Enclosed Van (Semi) 

	0.99 
	0.99 

	0.98 
	0.98 

	0.99 
	0.99 

	0.98 
	0.98 

	0.99 
	0.99 

	0.98 
	0.98 

	0.99 
	0.99 

	928 
	928 


	End Dump (SU) 
	End Dump (SU) 
	End Dump (SU) 

	0.81 
	0.81 

	0.89 
	0.89 

	0.92 
	0.92 

	0.89 
	0.89 

	0.89 
	0.89 

	0.88 
	0.88 

	0.88 
	0.88 

	26 
	26 


	End Dump (Semi) 
	End Dump (Semi) 
	End Dump (Semi) 

	0.83 
	0.83 

	1.00 
	1.00 

	0.96 
	0.96 

	0.91 
	0.91 

	0.87 
	0.87 

	0.96 
	0.96 

	0.96 
	0.96 

	23 
	23 


	End Dump wTrailer 
	End Dump wTrailer 
	End Dump wTrailer 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	7 
	7 


	Low Boy Platform 
	Low Boy Platform 
	Low Boy Platform 

	0.82 
	0.82 

	0.84 
	0.84 

	0.89 
	0.89 

	0.82 
	0.82 

	0.93 
	0.93 

	0.91 
	0.91 

	0.91 
	0.91 

	56 
	56 


	Low Loading 
	Low Loading 
	Low Loading 

	0.86 
	0.86 

	0.91 
	0.91 

	0.88 
	0.88 

	0.90 
	0.90 

	0.90 
	0.90 

	0.90 
	0.90 

	0.89 
	0.89 

	116 
	116 


	Open Top Van 
	Open Top Van 
	Open Top Van 

	0.00 
	0.00 

	0.25 
	0.25 

	0.25 
	0.25 

	0.00 
	0.00 

	0.75 
	0.75 

	0.25 
	0.25 

	0.00 
	0.00 

	4 
	4 


	Passenger Vehicle 
	Passenger Vehicle 
	Passenger Vehicle 

	0.83 
	0.83 

	0.83 
	0.83 

	0.87 
	0.87 

	0.73 
	0.73 

	0.77 
	0.77 

	0.80 
	0.80 

	0.80 
	0.80 

	30 
	30 


	Pickup-Utility-Service 
	Pickup-Utility-Service 
	Pickup-Utility-Service 

	0.81 
	0.81 

	0.71 
	0.71 

	0.76 
	0.76 

	0.73 
	0.73 

	0.79 
	0.79 

	0.79 
	0.79 

	0.79 
	0.79 

	94 
	94 


	Pickup-Utility-Service wTrailer 
	Pickup-Utility-Service wTrailer 
	Pickup-Utility-Service wTrailer 

	0.79 
	0.79 

	0.67 
	0.67 

	0.88 
	0.88 

	0.75 
	0.75 

	0.71 
	0.71 

	0.88 
	0.88 

	0.83 
	0.83 

	24 
	24 


	Plaform wTrailer 
	Plaform wTrailer 
	Plaform wTrailer 

	0.80 
	0.80 

	0.77 
	0.77 

	0.80 
	0.80 

	0.80 
	0.80 

	0.83 
	0.83 

	0.83 
	0.83 

	0.83 
	0.83 

	30 
	30 


	Platform (SU) 
	Platform (SU) 
	Platform (SU) 

	0.87 
	0.87 

	0.86 
	0.86 

	0.90 
	0.90 

	0.86 
	0.86 

	0.84 
	0.84 

	0.90 
	0.90 

	0.89 
	0.89 

	135 
	135 


	Platform (Semi) 
	Platform (Semi) 
	Platform (Semi) 

	0.91 
	0.91 

	0.93 
	0.93 

	0.93 
	0.93 

	0.91 
	0.91 

	0.91 
	0.91 

	0.94 
	0.94 

	0.94 
	0.94 

	160 
	160 


	Stake Body (SU) 
	Stake Body (SU) 
	Stake Body (SU) 

	0.81 
	0.81 

	0.88 
	0.88 

	0.87 
	0.87 

	0.90 
	0.90 

	0.83 
	0.83 

	0.89 
	0.89 

	0.89 
	0.89 

	114 
	114 


	Tank (Multi) 
	Tank (Multi) 
	Tank (Multi) 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	5 
	5 


	 Tank (SU) 
	 Tank (SU) 
	 Tank (SU) 

	0.64 
	0.64 

	0.55 
	0.55 

	0.73 
	0.73 

	0.55 
	0.55 

	0.64 
	0.64 

	0.73 
	0.73 

	0.64 
	0.64 

	11 
	11 


	Tank (Semi) 
	Tank (Semi) 
	Tank (Semi) 

	0.94 
	0.94 

	1.00 
	1.00 

	0.99 
	0.99 

	0.96 
	0.96 

	0.99 
	0.99 

	0.99 
	0.99 

	0.99 
	0.99 

	83 
	83 


	 Tank Tank 
	 Tank Tank 
	 Tank Tank 

	1.00 
	1.00 

	0.96 
	0.96 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	1.00 
	1.00 

	27 
	27 


	Others 
	Others 
	Others 

	0.29 
	0.29 

	0.37 
	0.37 

	0.45 
	0.45 

	0.47 
	0.47 

	0.22 
	0.22 

	0.37 
	0.37 

	0.18 
	0.18 

	49 
	49 


	Accuracy 
	Accuracy 
	Accuracy 

	0.92 
	0.92 

	0.93 
	0.93 

	0.94 
	0.94 

	0.93 
	0.93 

	0.93 
	0.93 

	0.94 
	0.94 

	0.94 
	0.94 

	3,084 
	3,084 


	Avg CCR 
	Avg CCR 
	Avg CCR 

	0.84 
	0.84 

	0.86 
	0.86 

	0.88 
	0.88 

	0.85 
	0.85 

	0.87 
	0.87 

	0.88 
	0.88 

	0.86 
	0.86 

	3,084 
	3,084 




	Note: SU: Single-Unit Truck; Semi: Tractors pulling Semi-Trailer; Multi: Tractors pulling multiple trailers. Cells labeled with red colors represent CCR lower than 0.80. Green colors highlight the benefits of using the SMA model. 
	 
	After applying model averaging across five PointNet models, the number of classes with CCR value less than 80 percent was significantly reduced. The model ensemble outperformed most of the individual models in terms of accuracy, average class CCR, and F1 score. SMA and BMA presented the same level of accuracy according to these aggregated measurements. The SMA outperforms the BMA method in terms of model performance on drop frame vans (Semi), low loading truck, open-top vans, pickup/utility/service with tra
	to test if a significant difference existed between the results of SMA and BMA. The p-value of 0.02 showed the null hypothesis for the difference between SMA and BMA was significant, and at a significance level of 5 percent could be rejected. Therefore, the performance of SMA is significantly better than the BMA method. 
	A closer assessment of the minority classes found that the performance of the ensembled PointNet was not significantly biased towards the majority class since the minority class presented low variations in their body type design. Hence, the ensemble PointNet presents a promising result in solving truck body type classification problems.  
	For illustration purposes, in 
	For illustration purposes, in 
	Table 6.2
	Table 6.2

	 and 
	Table 6.3
	Table 6.3

	, the “Others” class was split into “Others (SU)” and “Others (wTrailer)” to denote single-unit trucks and trucks with trailer(s) that were misclassified with other types of trucks respectively. 

	 
	Table 6.2 Confusion Matrix for single-unit truck and passenger vehicles (SMA Approach) 
	 
	 
	 
	 
	 

	Bobtail 
	Bobtail 

	Cab-over Enclosed Van (SU) 
	Cab-over Enclosed Van (SU) 

	Concrete 
	Concrete 
	Mixer 

	Conv Enclosed Van (SU) 
	Conv Enclosed Van (SU) 

	End Dump (SU) 
	End Dump (SU) 

	Low Loading 
	Low Loading 

	Passenger Vehicle 
	Passenger Vehicle 

	Pickup-Utility-Service 
	Pickup-Utility-Service 

	Platform (SU) 
	Platform (SU) 

	Stake Body (SU) 
	Stake Body (SU) 

	Tank (SU) 
	Tank (SU) 

	Others 
	Others 
	(SU) 

	Test Counts 
	Test Counts 

	CCR 
	CCR 



	Bobtail 
	Bobtail 
	Bobtail 
	Bobtail 

	109 
	109 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	109 
	109 

	1.00 
	1.00 


	Cab-over Enclosed Van (SU) 
	Cab-over Enclosed Van (SU) 
	Cab-over Enclosed Van (SU) 

	0 
	0 

	147 
	147 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	148 
	148 

	0.99 
	0.99 


	Concrete 
	Concrete 
	Concrete 

	0 
	0 

	0 
	0 

	16 
	16 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	16 
	16 

	1.00 
	1.00 


	Conv Enclosed Van (SU) 
	Conv Enclosed Van (SU) 
	Conv Enclosed Van (SU) 

	1 
	1 

	2 
	2 

	0 
	0 

	351 
	351 

	0 
	0 

	7 
	7 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	362 
	362 

	0.97 
	0.97 


	End Dump (SU) 
	End Dump (SU) 
	End Dump (SU) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	23 
	23 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	2 
	2 

	0 
	0 

	0 
	0 

	26 
	26 

	0.88 
	0.88 


	Low Loading 
	Low Loading 
	Low Loading 

	0 
	0 

	1 
	1 

	0 
	0 

	7 
	7 

	0 
	0 

	104 
	104 

	0 
	0 

	4 
	4 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	116 
	116 

	0.90 
	0.90 


	Passenger Vehicle 
	Passenger Vehicle 
	Passenger Vehicle 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	24 
	24 

	5 
	5 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	30 
	30 

	0.80 
	0.80 


	Pickup-Utility-Service* 
	Pickup-Utility-Service* 
	Pickup-Utility-Service* 

	0 
	0 

	2 
	2 

	0 
	0 

	2 
	2 

	0 
	0 

	1 
	1 

	3 
	3 

	74 
	74 

	6 
	6 

	4 
	4 

	0 
	0 

	1 
	1 

	94 
	94 

	0.90 
	0.90 


	Platform (SU) 
	Platform (SU) 
	Platform (SU) 

	1 
	1 

	0 
	0 

	0 
	0 

	2 
	2 

	0 
	0 

	0 
	0 

	0 
	0 

	3 
	3 

	121 
	121 

	5 
	5 

	1 
	1 

	2 
	2 

	135 
	135 

	0.79 
	0.79 


	Stake Body (SU)** 
	Stake Body (SU)** 
	Stake Body (SU)** 

	0 
	0 

	0 
	0 

	0 
	0 

	2 
	2 

	1 
	1 

	0 
	0 

	0 
	0 

	3 
	3 

	4 
	4 

	102 
	102 

	0 
	0 

	1 
	1 

	114 
	114 

	0.89 
	0.89 


	Tank (SU) 
	Tank (SU) 
	Tank (SU) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	3 
	3 

	8 
	8 

	0 
	0 

	11 
	11 

	0.73 
	0.73 


	Other (SU) 
	Other (SU) 
	Other (SU) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	3 
	3 

	4 
	4 

	1 
	1 

	0 
	0 

	18 
	18 

	27 
	27 

	0.67 
	0.67 




	Note: Cells labeled with red colors represent CCR lower than 0.80. The yellow cells highlight the correctly classified numbers. The grey cells point to the main causes of the misclassification. “Conv” is short for “Conventional”. *This row does not sum up to 94, since one of the pickup/utility/service trucks was misclassified with pickup/utility/service with a trailer. ** In this row, one stake body (SU) was misclassified as a semi-trailer platform. This was identified as mislabeling through visual verifica
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.3 Confusion Matrix for a truck with Trailer(s) (SMA Approach) 
	 
	 
	 
	 
	 
	 

	20ft Container 
	20ft Container 

	40ft Container 
	40ft Container 

	53ft Container 
	53ft Container 

	Auto (Conv) 
	Auto (Conv) 

	Auto (Pickup) 
	Auto (Pickup) 

	Drop 
	Drop 
	Frame 
	(Semi) 

	Dry Bulk Transport 
	Dry Bulk Transport 

	Enclosed Van  
	Enclosed Van  
	(Multi) 

	Enclosed Van  
	Enclosed Van  
	(Semi) 

	End Dump (Semi) 
	End Dump (Semi) 

	End Dump wTrailer 
	End Dump wTrailer 

	Low  
	Low  
	Boy Platform 

	Open Top  
	Open Top  
	Van 

	P/U/S wTrailer 
	P/U/S wTrailer 

	Plaform wTrailer 
	Plaform wTrailer 

	Platform (Semi) 
	Platform (Semi) 

	Tank (Multi) 
	Tank (Multi) 

	Tank (Semi) 
	Tank (Semi) 

	Tank Tank 
	Tank Tank 

	Others 
	Others 
	(wTrailer) 

	Test  
	Test  
	Counts 

	CCR 
	CCR 

	CCR in 
	CCR in 
	(8) 
	 



	20ft Container 
	20ft Container 
	20ft Container 
	20ft Container 

	59 
	59 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	59 
	59 

	1.00 
	1.00 

	0.96 
	0.96 


	40ft Container 
	40ft Container 
	40ft Container 

	0 
	0 

	195 
	195 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	196 
	196 

	0.99 
	0.99 

	0.98 
	0.98 


	53ft Container 
	53ft Container 
	53ft Container 

	0 
	0 

	0 
	0 

	164 
	164 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	6 
	6 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	170 
	170 

	0.96 
	0.96 

	- 
	- 


	Auto (Conv) 
	Auto (Conv) 
	Auto (Conv) 

	0 
	0 

	0 
	0 

	0 
	0 

	31 
	31 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	3 
	3 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	34 
	34 

	0.91 
	0.91 

	0.91 
	0.91 


	Auto (Pickup) 
	Auto (Pickup) 
	Auto (Pickup) 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	17 
	17 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	19 
	19 

	0.89 
	0.89 

	- 
	- 


	Drop Frame (Semi) 
	Drop Frame (Semi) 
	Drop Frame (Semi) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	23 
	23 

	0 
	0 

	0 
	0 

	4 
	4 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	28 
	28 

	0.82 
	0.82 

	- 
	- 


	Dry Bulk Transport 
	Dry Bulk Transport 
	Dry Bulk Transport 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	16 
	16 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	16 
	16 

	1.00 
	1.00 

	- 
	- 


	Enclosed Van (Multi) 
	Enclosed Van (Multi) 
	Enclosed Van (Multi) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	4 
	4 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	5 
	5 

	0.80 
	0.80 

	- 
	- 


	Enclosed Van (Semi)* 
	Enclosed Van (Semi)* 
	Enclosed Van (Semi)* 

	0 
	0 

	0 
	0 

	4 
	4 

	0 
	0 

	0 
	0 

	5 
	5 

	0 
	0 

	0 
	0 

	913 
	913 

	0 
	0 

	0 
	0 

	0 
	0 

	2 
	2 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	2 
	2 

	928 
	928 

	0.98 
	0.98 

	0.94 
	0.94 


	End Dump (Semi) 
	End Dump (Semi) 
	End Dump (Semi) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	22 
	22 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	23 
	23 

	0.96 
	0.96 

	0.85 
	0.85 


	End Dump wTrailer 
	End Dump wTrailer 
	End Dump wTrailer 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	7 
	7 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	7 
	7 

	1.00 
	1.00 

	- 
	- 


	Low Boy Platform 
	Low Boy Platform 
	Low Boy Platform 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	51 
	51 

	0 
	0 

	1 
	1 

	0 
	0 

	4 
	4 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	56 
	56 

	0.91 
	0.91 

	- 
	- 


	Open Top Van 
	Open Top Van 
	Open Top Van 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	3 
	3 

	4 
	4 

	0.25 
	0.25 

	- 
	- 


	P/U/S wTrailer** 
	P/U/S wTrailer** 
	P/U/S wTrailer** 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	21 
	21 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	24 
	24 

	0.88 
	0.88 

	- 
	- 


	Plaform wTrailer 
	Plaform wTrailer 
	Plaform wTrailer 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	2 
	2 

	25 
	25 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	30 
	30 

	0.83 
	0.83 

	- 
	- 


	Platform (Semi) 
	Platform (Semi) 
	Platform (Semi) 

	0 
	0 

	0 
	0 

	4 
	4 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	150 
	150 

	0 
	0 

	0 
	0 

	0 
	0 

	3 
	3 

	160 
	160 

	0.94 
	0.94 

	0.94 
	0.94 


	Tank  
	Tank  
	Tank  
	(Multi) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	5 
	5 

	0 
	0 

	0 
	0 

	0 
	0 

	5 
	5 

	1.00 
	1.00 

	- 
	- 


	Tank 
	Tank 
	Tank 
	 (Semi) 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	1 
	1 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	82 
	82 

	0 
	0 

	0 
	0 

	83 
	83 

	0.99 
	0.99 

	0.97 
	0.97 


	Tank 
	Tank 
	Tank 
	 Tank 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 

	27 
	27 

	0 
	0 

	27 
	27 

	1.00 
	1.00 

	- 
	- 


	Others (wTrailer) 
	Others (wTrailer) 
	Others (wTrailer) 

	0 
	0 

	0 
	0 

	7 
	7 

	0 
	0 

	1 
	1 

	1 
	1 

	0 
	0 

	2 
	2 

	4 
	4 

	0 
	0 

	0 
	0 

	0 
	0 

	2 
	2 

	0 
	0 

	1 
	1 

	2 
	2 

	1 
	1 

	1 
	1 

	0 
	0 

	18 
	18 

	40 
	40 

	0.45 
	0.45 

	- 
	- 




	Note: * In this row, a semi-trailer enclosed van was misclassed to a pickup/utility/service truck. This was identified as mislabeling through visual verification. ** “P/U/S wTrailer” represents the pickup/utility/service truck 
	 
	A comparison between the CCR values in 
	A comparison between the CCR values in 
	Table 6.2
	Table 6.2

	 and 
	Table 6.3
	Table 6.3

	 shows that the model was less competent in predicting single-unit trucks, where 18 percent of single-unit vehicles have an average CCR less than 0.80, while only 5 percent of trucks pulling trailer (s) have an average CCR less than 0.80. This was likely caused by the similarity across body types. For example, with different shapes of commodities or devices carried, single-unit platform trucks shared similar body configurations with pickup/utility/service trucks, single-unit stake body trucks, single-unit t
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	 presents the confusion matrix of 19 truck body types, primarily including tractors pulling semi-trailers, tractors pulling a large single trailer, and tractors pulling multiple trailers. The body type confusion occurred primarily among auto transports, low boy platform, and semi-trailer platform trucks. Similar to the issues shown in single-unit trucks, the loading on the trailers is likely the cause of misclassifications across these three types. The performance of the SMA PointNet was compared with the s

	  
	7. LiDAR intensity-based Truck Surface Characterization 
	7.1 Introduction 
	Aside from their physical attributes, fleet identification features such as logos found on many trucks can be used to infer their industry affiliation and can serve as another dimension of truck characterization to provide further insights into their activity patterns.  Along with the depth and geometry information as mentioned in previous chapters, LiDAR sensors provide an additional attribute widely named as ‘intensity’(I). LiDAR intensity is the measured power (returned) of a reflected laser beam from a 
	Aside from their physical attributes, fleet identification features such as logos found on many trucks can be used to infer their industry affiliation and can serve as another dimension of truck characterization to provide further insights into their activity patterns.  Along with the depth and geometry information as mentioned in previous chapters, LiDAR sensors provide an additional attribute widely named as ‘intensity’(I). LiDAR intensity is the measured power (returned) of a reflected laser beam from a 
	 Figure 7.1
	 Figure 7.1

	.   A significant advantage of LiDAR intensity over conventional images is its independence of ambient lighting, which allows it to be effective in poor lighting conditions, such as twilight and night times. This capability makes LiDAR a candidate technology for capturing truck fleet attributes. 
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	Figure 7.2 Illustration of need for Intensity homogenization 
	 
	The effect of above stated factors on LiDAR intensity can be seen in 
	The effect of above stated factors on LiDAR intensity can be seen in 
	Figure 7.2
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	. The three scans are colored by LiDAR intensity values ranging from 0-255 changing from blue shade for lower values to red shade for higher values. As a truck passes through the LiDAR Detection Zone (LDZ), the intensity values corresponding to the same part of truck change. This can be confirmed with the visual examination of 
	Figure 7.2
	Figure 7.2

	. For example, let us observe the intensity values corresponding to rear section of the truck body in the three scans. Intensity values change from blue shade to green and then back to blue shade. 

	If we would like to characterize the truck surfaces using LiDAR intensity values, it is necessary to homogenize the Intensity values such that same part of truck will have same intensity values irrespective of its position in LDZ. Homogenized LiDAR intensity values have potential and may enable consistent truck surface characterization even across multiple sites. 
	7.2 Proposed LiDAR Intensity Homogenization Framework 
	Radiometrically processed LiDAR intensity has been used in applications of Airborne LiDAR Scanning (ALS) for land cover estimation and classification, ecological monitoring, etc.(48). Terrestrial LiDAR Scanning (TLS) based intensity data has been used to investigate pavement markings (49–52), traffic sign reflectivity assessment (53), autonomous driving(48) etc. To the best of our knowledge, this is the first attempt of using LiDAR intensity data to characterize the surfaces of commercial vehicles. More com
	7.2.1 Literature Review 
	LiDAR intensity can be expressed as the strength of backscattered laser echo from the scanned surface and is influenced by multiple complexly interacting factors. These factors include the geometry of the scanned surface, angle of incidence, range, environment, and the sensor itself. From literature, Range(R) and angle of incidence (𝛼) are identified as the two most important variables that needs to be corrected for their influence on intensity (53). Majority of the intensity correction methods from litera
	7.2.2 Proposed LiDAR intensity correction framework 
	Though empirical model driven Intensity correction methods can be accurate, they require calibration/estimation of parameters for every sensor in the lab preferably before the sensor is deployed for data collection. On the other hand, a data driven method for correction of intensity values could be applied to an existing / already collected data from the field. Hence our focus is to estimate the parameters for the LiDAR intensity correction using a data driven technique such as mentioned in (55). 
	As per the proposed framework the corrected intensity values(𝐼𝑐) could be written as a function of observed intensity(𝐼𝑜), range(𝑅), and cosine of angle of incidence (𝛼)as mentioned in 
	As per the proposed framework the corrected intensity values(𝐼𝑐) could be written as a function of observed intensity(𝐼𝑜), range(𝑅), and cosine of angle of incidence (𝛼)as mentioned in 
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	 below. 𝐼𝑐=𝐼𝑜𝑅𝑎cosb(𝛼) 

	Equation 7-1 
	To estimate the parameters in 
	To estimate the parameters in 
	Equation 7-1
	Equation 7-1

	, we adopt the assumption that a location on the of the truck body across several LiDAR scans of truck’s trajectory should have same intensity value irrespective of its range and angle of incidence. Such points with their presence in more than one LiDAR scan are identified, their corresponding trajectory in successive scans is estimated. To make the parameter estimation process more robust, a very close neighboring region (patch) of each point is considered for the parameter estimation.  

	7.2.3 Calibration Strips for Intensity Correction 
	For simplifying the terminology in further documentation, let us call all the patches of one single point across scans as that point’s calibration strip (𝑐𝑠𝑝). So, each 𝑐𝑠𝑝 contains 𝑛𝑐𝑠,𝑝 points with different range and angle of incidence. Technically all these points represent same region of truck, hance should have same intensity. Let us say we identified a total of 𝑁𝑐𝑠 such calibration strips for a given truck. 
	Then the parameter estimation problem could be stated as an optimization (minimization) problem which would parallelly reduce the variance of observed intensity values of each calibration strip of given truck. This optimization problem can be written as 
	Then the parameter estimation problem could be stated as an optimization (minimization) problem which would parallelly reduce the variance of observed intensity values of each calibration strip of given truck. This optimization problem can be written as 
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	. ∑∑(ln(𝐼𝑜,𝑝)+𝑎𝑙𝑛(𝑅𝑝)+𝑏𝑙𝑛(cos(𝛼𝑝)))2𝑝∈𝑖𝑐𝑠𝑝𝑖𝑐𝑠𝑝∈𝑁𝐶𝑆 

	Equation 7-2 
	7.2.4 Stepwise Description of the Parameter Calibration 
	As explained in previous chapters each LiDAR scan of truck is a pointcloud object depicting the cartesian coordinates of truck geometry in 3D. Range and angle of incidence of each of those points needs to be calculated for estimating the Intensity correction parameters. The range of each of the points can be estimated directly by estimating the length of their position vector from the LiDAR scanner itself.  
	The surface normal of each of the points along with their position vectors is needed to estimate the angle of incidence. As discussed in section 
	The surface normal of each of the points along with their position vectors is needed to estimate the angle of incidence. As discussed in section 
	3.5.1
	3.5.1

	, the density of the points is not constant for each LiDAR scan both in horizontal as well as vertical direction.  

	The sparse point density of individual frames affects the ability to estimate accurate surface normal near the edges. This limitation was overcome by estimating the surface normals of the dense reconstructed truck in translated coordinates using the transformation matrices obtained from section  
	The sparse point density of individual frames affects the ability to estimate accurate surface normal near the edges. This limitation was overcome by estimating the surface normals of the dense reconstructed truck in translated coordinates using the transformation matrices obtained from section  
	4.2
	4.2

	. Once the surface normals estimates were obtained, the body of the truck was segregated by using a hybrid sequential Gaussian Mixture Models -based clustering of normals and density-based DBSCAN clustering. The surface normals of the segregated body of truck were inverse transformed back to the original coordinates for the purpose of angle of incidence estimation. 

	Once the surface normals are obtained, the calibration strips of the truck are obtained as described in section 
	Once the surface normals are obtained, the calibration strips of the truck are obtained as described in section 
	7.2.3
	7.2.3

	. An evolutionary algorithm based many objective optimization using pymoo (56) is performed on the calibration strips of a truck to estimate the Intensity correction parameters. This framework is illustrated in a flowchart in 
	Figure 7.3
	Figure 7.3

	. 
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	Figure 7.3 LiDAR Intensity correction framework 
	 
	7.3 Preliminary Results of LiDAR Intensity Homogenization 
	The proposed framework was applied to a small subset of trucks from section 
	The proposed framework was applied to a small subset of trucks from section 
	3.3
	3.3

	. Preliminary results presented in 
	Figure 7.4
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	  show an improved distinction of fleet identification features. The corrected intensity values show a reduction in the variance of intensity values quite well and provides a distinct contrast of fleet features against the background. 

	 
	 
	Figure 7.4 Preliminary results of LiDAR Intensity correction 
	 
	7.4 Future Expansion 
	This LiDAR intensity correction framework has the potential to facilitate the characterization of trucks at fleet level.  This could fill significant freight data gap and help provide valuable insights to freight policy making agencies. 
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	Figure 7.5 Potential to fill freight data gaps 
	 
	Two hypothetical example cases are provided to demonstrate the potential of a LiDAR intensity-based truck surface characterization model. Traditionally trucks 1.a and 1.b from 
	Two hypothetical example cases are provided to demonstrate the potential of a LiDAR intensity-based truck surface characterization model. Traditionally trucks 1.a and 1.b from 
	Figure 7.5
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	 would have been identified as FHWA Class 9 Semi tank truck by existing advanced truck classification methods(38). With the development of LiDAR intensity-based surface characterization, a new dimension of industry being served could be added. In this example truck 1.a mostly serves cryogenic industry, whereas truck 1.b serves the retail distribution centers of gasoline. Similarly for truck 2.a, 2.b we would have been able to identify a freight vs non-freight vehicle for the same body configuration with the

	 
	 
	8. Conclusion 
	To fill the truck monitoring gaps on rural highway corridors, this study developed novel LiDAR-based truck classification methods through the development of a new truck point cloud reconstruction framework that was able to retain a wide LDZ and accurately classify trucks based on the FHWA-CA scheme and detailed truck body configurations. The data used for modeling was collected from a horizontally oriented multi-array 3D LiDAR sensor, which has the ability to capture a wide field of view of the roadway. In 
	This study investigated the PointNet deep representation learning algorithm to further classify trucks in their detailed body configurations. The PointNet-based model successfully learned the basic characteristics of each truck class by selecting the critical features from each preprocessed point cloud. Finally, two model ensemble strategies, SMA and BMA, were explored to improve the generality of the model and to further enhance the model performance. The LiDAR-based truck body type classification model wa
	In the future, more LiDAR data will be collected from other detection sites to test the transferability of the proposed model. Furthermore, multi-lane truck classification applications can be explored as the horizontal orientation of the LiDAR permits capturing a full 360-degree field of view. 
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